Loading…

Modelling Blow Fly (Diptera: Calliphoridae) Spatiotemporal Species Richness and Total Abundance Across Land-Use Types

Geographic Information Systems provide the means to explore the spatial distribution of insect species across various land-use types to understand their relationship with shared or overlapping spatiotemporal resources. Blow fly species richness and total fly abundance were correlated among six land-...

Full description

Saved in:
Bibliographic Details
Published in:Insects (Basel, Switzerland) Switzerland), 2024-10, Vol.15 (10), p.822
Main Authors: Laprise, Madison A, Grgicak-Mannion, Alice, VanLaerhoven, Sherah L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c370t-9b07302616999420a36ef1d117f9b0d8edabcf749fb3e54cd835d0e2d7c145843
container_end_page
container_issue 10
container_start_page 822
container_title Insects (Basel, Switzerland)
container_volume 15
creator Laprise, Madison A
Grgicak-Mannion, Alice
VanLaerhoven, Sherah L
description Geographic Information Systems provide the means to explore the spatial distribution of insect species across various land-use types to understand their relationship with shared or overlapping spatiotemporal resources. Blow fly species richness and total fly abundance were correlated among six land-use types (residential, commercial, waste, woods, roads, and agricultural crop types) and distance to streams. To generate multivariate models of species richness and total fly abundance, blow fly trapping sites were chosen across the land-use gradient of Windsor-Essex County (Ontario, Canada) using a stratified random sampling approach. Sampling occurred in mid-June (spring), late August (summer), and late October (fall). Spring species richness correlated highest to residential (-), woods (-), distance to streams (+), and tomato fields (+) in models across all three land-use buffer scale distances (0.5, 1, 2 km), with waste (+/-), roads (-), wheat/corn (-), and commercial (-) correlating at only two of the three scales. Spring total fly abundance correlated with all but one land-use variable across all buffer scale distances, but the distance to streams (+), followed by orchards/vineyards (+) exhibited the greatest importance to these models. Summer blow fly species richness correlated with roads (-) and commercial (+) across all buffer distances, whereas at two of three buffer distances wheat/corn (-), residential (+), distance to streams (+), waste (-), and orchards/vineyards (+) were also important. Summer total fly abundance correlated to models with distance to streams (+), orchards/vineyards (+), and sugar beets/other vegetables (+) at the 2 km scale. Species richness and total abundance models at the 0.5 km buffer distance exhibited the highest correlation, lowest root mean square error, and similar prediction error to those derived at larger buffer distances. This study provides baseline methods and models for future validation and expansion of species-specific knowledge regarding adult blow fly relationships with spatiotemporal resources across land-use types and landscape features.
doi_str_mv 10.3390/insects15100822
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d5900f6b022f4f46b7f74c77b6f30cc2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814392221</galeid><doaj_id>oai_doaj_org_article_d5900f6b022f4f46b7f74c77b6f30cc2</doaj_id><sourcerecordid>A814392221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-9b07302616999420a36ef1d117f9b0d8edabcf749fb3e54cd835d0e2d7c145843</originalsourceid><addsrcrecordid>eNpdUk1v1DAQjRAVrdqeuaFIXMohrT-TmAtaFgqVFiHB9mw59njXq6wd7AS0_x7TlKqtffB43ptnz0dRvMboklKBrpxPoMeEOUaoJeRFcUJQwyvGOHr5yD4uzlPaobxqTHDdviqOqWCcUNGeFNO3YKDvnd-UH_vwp7zuD-XFJzeMENX7cqkyNGxDdEbBu_LnoEYXRtgPIao-X0E7SOUPp7ceUiqVN-U6jBladJM3ymsoFzqGDK0yVt0mKNeHAdJZcWRVn-D8_jwtbq8_r5dfq9X3LzfLxarStEFjJTrUUERqXAshGEGK1mCxwbixGTItGNVp2zBhOwqcadNSbhAQ02jMeMvoaXEz65qgdnKIbq_iQQbl5J0jxI1UcXS6B2m4QMjWHSLEMsvqrsnCumm62lKkNclaH2atYer2YDT4MRfhiehTxLut3ITfEmOOWtGKrHBxrxDDrwnSKPcu6Vx95SFMSVJMUJ1byXmmvn1G3YUp-lyrmVXjmXU5szYqZ-C8DflhnbeBvdPBg3XZv2gxo4IQgnPA1Rxw15QI9uH7GMl_MyWfzVSOePM46wf-_wmifwFvRchX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120661855</pqid></control><display><type>article</type><title>Modelling Blow Fly (Diptera: Calliphoridae) Spatiotemporal Species Richness and Total Abundance Across Land-Use Types</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Laprise, Madison A ; Grgicak-Mannion, Alice ; VanLaerhoven, Sherah L</creator><creatorcontrib>Laprise, Madison A ; Grgicak-Mannion, Alice ; VanLaerhoven, Sherah L</creatorcontrib><description>Geographic Information Systems provide the means to explore the spatial distribution of insect species across various land-use types to understand their relationship with shared or overlapping spatiotemporal resources. Blow fly species richness and total fly abundance were correlated among six land-use types (residential, commercial, waste, woods, roads, and agricultural crop types) and distance to streams. To generate multivariate models of species richness and total fly abundance, blow fly trapping sites were chosen across the land-use gradient of Windsor-Essex County (Ontario, Canada) using a stratified random sampling approach. Sampling occurred in mid-June (spring), late August (summer), and late October (fall). Spring species richness correlated highest to residential (-), woods (-), distance to streams (+), and tomato fields (+) in models across all three land-use buffer scale distances (0.5, 1, 2 km), with waste (+/-), roads (-), wheat/corn (-), and commercial (-) correlating at only two of the three scales. Spring total fly abundance correlated with all but one land-use variable across all buffer scale distances, but the distance to streams (+), followed by orchards/vineyards (+) exhibited the greatest importance to these models. Summer blow fly species richness correlated with roads (-) and commercial (+) across all buffer distances, whereas at two of three buffer distances wheat/corn (-), residential (+), distance to streams (+), waste (-), and orchards/vineyards (+) were also important. Summer total fly abundance correlated to models with distance to streams (+), orchards/vineyards (+), and sugar beets/other vegetables (+) at the 2 km scale. Species richness and total abundance models at the 0.5 km buffer distance exhibited the highest correlation, lowest root mean square error, and similar prediction error to those derived at larger buffer distances. This study provides baseline methods and models for future validation and expansion of species-specific knowledge regarding adult blow fly relationships with spatiotemporal resources across land-use types and landscape features.</description><identifier>ISSN: 2075-4450</identifier><identifier>EISSN: 2075-4450</identifier><identifier>DOI: 10.3390/insects15100822</identifier><identifier>PMID: 39452398</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agriculture ; Blowflies ; Canada ; Comparative analysis ; Corn ; Crops ; Diptera: Calliphoridae ; Distribution ; entomology ; Environmental aspects ; Flies ; Geographic information systems ; Geographical distribution ; geospatial technology ; Humidity ; Identification and classification ; Insect traps ; Insects ; Land use ; Landfill ; Livestock ; multidisciplinary ; multivariate regression models ; Nutrients ; Proteins ; Remote sensing ; Roads ; Roads &amp; highways ; Rural areas ; sampling ; Species richness ; Spring ; Streams ; Summer ; Tomatoes ; Traffic ; Vineyards ; Wheat</subject><ispartof>Insects (Basel, Switzerland), 2024-10, Vol.15 (10), p.822</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-9b07302616999420a36ef1d117f9b0d8edabcf749fb3e54cd835d0e2d7c145843</cites><orcidid>0009-0008-5954-7023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120661855/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120661855?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39452398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laprise, Madison A</creatorcontrib><creatorcontrib>Grgicak-Mannion, Alice</creatorcontrib><creatorcontrib>VanLaerhoven, Sherah L</creatorcontrib><title>Modelling Blow Fly (Diptera: Calliphoridae) Spatiotemporal Species Richness and Total Abundance Across Land-Use Types</title><title>Insects (Basel, Switzerland)</title><addtitle>Insects</addtitle><description>Geographic Information Systems provide the means to explore the spatial distribution of insect species across various land-use types to understand their relationship with shared or overlapping spatiotemporal resources. Blow fly species richness and total fly abundance were correlated among six land-use types (residential, commercial, waste, woods, roads, and agricultural crop types) and distance to streams. To generate multivariate models of species richness and total fly abundance, blow fly trapping sites were chosen across the land-use gradient of Windsor-Essex County (Ontario, Canada) using a stratified random sampling approach. Sampling occurred in mid-June (spring), late August (summer), and late October (fall). Spring species richness correlated highest to residential (-), woods (-), distance to streams (+), and tomato fields (+) in models across all three land-use buffer scale distances (0.5, 1, 2 km), with waste (+/-), roads (-), wheat/corn (-), and commercial (-) correlating at only two of the three scales. Spring total fly abundance correlated with all but one land-use variable across all buffer scale distances, but the distance to streams (+), followed by orchards/vineyards (+) exhibited the greatest importance to these models. Summer blow fly species richness correlated with roads (-) and commercial (+) across all buffer distances, whereas at two of three buffer distances wheat/corn (-), residential (+), distance to streams (+), waste (-), and orchards/vineyards (+) were also important. Summer total fly abundance correlated to models with distance to streams (+), orchards/vineyards (+), and sugar beets/other vegetables (+) at the 2 km scale. Species richness and total abundance models at the 0.5 km buffer distance exhibited the highest correlation, lowest root mean square error, and similar prediction error to those derived at larger buffer distances. This study provides baseline methods and models for future validation and expansion of species-specific knowledge regarding adult blow fly relationships with spatiotemporal resources across land-use types and landscape features.</description><subject>Agriculture</subject><subject>Blowflies</subject><subject>Canada</subject><subject>Comparative analysis</subject><subject>Corn</subject><subject>Crops</subject><subject>Diptera: Calliphoridae</subject><subject>Distribution</subject><subject>entomology</subject><subject>Environmental aspects</subject><subject>Flies</subject><subject>Geographic information systems</subject><subject>Geographical distribution</subject><subject>geospatial technology</subject><subject>Humidity</subject><subject>Identification and classification</subject><subject>Insect traps</subject><subject>Insects</subject><subject>Land use</subject><subject>Landfill</subject><subject>Livestock</subject><subject>multidisciplinary</subject><subject>multivariate regression models</subject><subject>Nutrients</subject><subject>Proteins</subject><subject>Remote sensing</subject><subject>Roads</subject><subject>Roads &amp; highways</subject><subject>Rural areas</subject><subject>sampling</subject><subject>Species richness</subject><subject>Spring</subject><subject>Streams</subject><subject>Summer</subject><subject>Tomatoes</subject><subject>Traffic</subject><subject>Vineyards</subject><subject>Wheat</subject><issn>2075-4450</issn><issn>2075-4450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk1v1DAQjRAVrdqeuaFIXMohrT-TmAtaFgqVFiHB9mw59njXq6wd7AS0_x7TlKqtffB43ptnz0dRvMboklKBrpxPoMeEOUaoJeRFcUJQwyvGOHr5yD4uzlPaobxqTHDdviqOqWCcUNGeFNO3YKDvnd-UH_vwp7zuD-XFJzeMENX7cqkyNGxDdEbBu_LnoEYXRtgPIao-X0E7SOUPp7ceUiqVN-U6jBladJM3ymsoFzqGDK0yVt0mKNeHAdJZcWRVn-D8_jwtbq8_r5dfq9X3LzfLxarStEFjJTrUUERqXAshGEGK1mCxwbixGTItGNVp2zBhOwqcadNSbhAQ02jMeMvoaXEz65qgdnKIbq_iQQbl5J0jxI1UcXS6B2m4QMjWHSLEMsvqrsnCumm62lKkNclaH2atYer2YDT4MRfhiehTxLut3ITfEmOOWtGKrHBxrxDDrwnSKPcu6Vx95SFMSVJMUJ1byXmmvn1G3YUp-lyrmVXjmXU5szYqZ-C8DflhnbeBvdPBg3XZv2gxo4IQgnPA1Rxw15QI9uH7GMl_MyWfzVSOePM46wf-_wmifwFvRchX</recordid><startdate>20241020</startdate><enddate>20241020</enddate><creator>Laprise, Madison A</creator><creator>Grgicak-Mannion, Alice</creator><creator>VanLaerhoven, Sherah L</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-5954-7023</orcidid></search><sort><creationdate>20241020</creationdate><title>Modelling Blow Fly (Diptera: Calliphoridae) Spatiotemporal Species Richness and Total Abundance Across Land-Use Types</title><author>Laprise, Madison A ; Grgicak-Mannion, Alice ; VanLaerhoven, Sherah L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-9b07302616999420a36ef1d117f9b0d8edabcf749fb3e54cd835d0e2d7c145843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Blowflies</topic><topic>Canada</topic><topic>Comparative analysis</topic><topic>Corn</topic><topic>Crops</topic><topic>Diptera: Calliphoridae</topic><topic>Distribution</topic><topic>entomology</topic><topic>Environmental aspects</topic><topic>Flies</topic><topic>Geographic information systems</topic><topic>Geographical distribution</topic><topic>geospatial technology</topic><topic>Humidity</topic><topic>Identification and classification</topic><topic>Insect traps</topic><topic>Insects</topic><topic>Land use</topic><topic>Landfill</topic><topic>Livestock</topic><topic>multidisciplinary</topic><topic>multivariate regression models</topic><topic>Nutrients</topic><topic>Proteins</topic><topic>Remote sensing</topic><topic>Roads</topic><topic>Roads &amp; highways</topic><topic>Rural areas</topic><topic>sampling</topic><topic>Species richness</topic><topic>Spring</topic><topic>Streams</topic><topic>Summer</topic><topic>Tomatoes</topic><topic>Traffic</topic><topic>Vineyards</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laprise, Madison A</creatorcontrib><creatorcontrib>Grgicak-Mannion, Alice</creatorcontrib><creatorcontrib>VanLaerhoven, Sherah L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Insects (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laprise, Madison A</au><au>Grgicak-Mannion, Alice</au><au>VanLaerhoven, Sherah L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling Blow Fly (Diptera: Calliphoridae) Spatiotemporal Species Richness and Total Abundance Across Land-Use Types</atitle><jtitle>Insects (Basel, Switzerland)</jtitle><addtitle>Insects</addtitle><date>2024-10-20</date><risdate>2024</risdate><volume>15</volume><issue>10</issue><spage>822</spage><pages>822-</pages><issn>2075-4450</issn><eissn>2075-4450</eissn><abstract>Geographic Information Systems provide the means to explore the spatial distribution of insect species across various land-use types to understand their relationship with shared or overlapping spatiotemporal resources. Blow fly species richness and total fly abundance were correlated among six land-use types (residential, commercial, waste, woods, roads, and agricultural crop types) and distance to streams. To generate multivariate models of species richness and total fly abundance, blow fly trapping sites were chosen across the land-use gradient of Windsor-Essex County (Ontario, Canada) using a stratified random sampling approach. Sampling occurred in mid-June (spring), late August (summer), and late October (fall). Spring species richness correlated highest to residential (-), woods (-), distance to streams (+), and tomato fields (+) in models across all three land-use buffer scale distances (0.5, 1, 2 km), with waste (+/-), roads (-), wheat/corn (-), and commercial (-) correlating at only two of the three scales. Spring total fly abundance correlated with all but one land-use variable across all buffer scale distances, but the distance to streams (+), followed by orchards/vineyards (+) exhibited the greatest importance to these models. Summer blow fly species richness correlated with roads (-) and commercial (+) across all buffer distances, whereas at two of three buffer distances wheat/corn (-), residential (+), distance to streams (+), waste (-), and orchards/vineyards (+) were also important. Summer total fly abundance correlated to models with distance to streams (+), orchards/vineyards (+), and sugar beets/other vegetables (+) at the 2 km scale. Species richness and total abundance models at the 0.5 km buffer distance exhibited the highest correlation, lowest root mean square error, and similar prediction error to those derived at larger buffer distances. This study provides baseline methods and models for future validation and expansion of species-specific knowledge regarding adult blow fly relationships with spatiotemporal resources across land-use types and landscape features.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39452398</pmid><doi>10.3390/insects15100822</doi><orcidid>https://orcid.org/0009-0008-5954-7023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4450
ispartof Insects (Basel, Switzerland), 2024-10, Vol.15 (10), p.822
issn 2075-4450
2075-4450
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d5900f6b022f4f46b7f74c77b6f30cc2
source Publicly Available Content Database; PubMed Central
subjects Agriculture
Blowflies
Canada
Comparative analysis
Corn
Crops
Diptera: Calliphoridae
Distribution
entomology
Environmental aspects
Flies
Geographic information systems
Geographical distribution
geospatial technology
Humidity
Identification and classification
Insect traps
Insects
Land use
Landfill
Livestock
multidisciplinary
multivariate regression models
Nutrients
Proteins
Remote sensing
Roads
Roads & highways
Rural areas
sampling
Species richness
Spring
Streams
Summer
Tomatoes
Traffic
Vineyards
Wheat
title Modelling Blow Fly (Diptera: Calliphoridae) Spatiotemporal Species Richness and Total Abundance Across Land-Use Types
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20Blow%20Fly%20(Diptera:%20Calliphoridae)%20Spatiotemporal%20Species%20Richness%20and%20Total%20Abundance%20Across%20Land-Use%20Types&rft.jtitle=Insects%20(Basel,%20Switzerland)&rft.au=Laprise,%20Madison%20A&rft.date=2024-10-20&rft.volume=15&rft.issue=10&rft.spage=822&rft.pages=822-&rft.issn=2075-4450&rft.eissn=2075-4450&rft_id=info:doi/10.3390/insects15100822&rft_dat=%3Cgale_doaj_%3EA814392221%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-9b07302616999420a36ef1d117f9b0d8edabcf749fb3e54cd835d0e2d7c145843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120661855&rft_id=info:pmid/39452398&rft_galeid=A814392221&rfr_iscdi=true