Loading…

Influence of Temperature-Controlled Fermentation on the Quality of Mild Coffee (Coffea arabica L.) Cultivated at Different Elevations

Controlled fermentation processes have high potential for improving coffee quality. The effect of fermentation temperature on beverage quality was investigated with coffee cultivated at elevations between 1166 and 1928 m. A completely randomized design was carried out at five elevation ranges at 200...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture (Basel) 2023-06, Vol.13 (6), p.1132
Main Authors: Peñuela-Martínez, Aida Esther, Moreno-Riascos, Sandra, Medina-Rivera, Rubén
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Controlled fermentation processes have high potential for improving coffee quality. The effect of fermentation temperature on beverage quality was investigated with coffee cultivated at elevations between 1166 and 1928 m. A completely randomized design was carried out at five elevation ranges at 200 m intervals in five farms per elevation range, and two temperatures (15 °C and 30 °C), which were maintained in a temperature-controlled bioreactor. Each temperature-controlled fermentation batch had a spontaneous fermentation batch (control treatment). Microbial identification of LAB and yeast was performed using a Biolog™ MicroStation™ ID System, and cup quality tests were performed following the SCA protocol. Tests conducted at 15 °C showed higher microbial community activity on the substrates used, indicating greater transformation potential than those conducted at 30 °C or those of spontaneous fermentation. According to Wilcoxon and Kruskal–Wallis tests, temperature-controlled fermentation resulted in high-quality coffee for all elevation ranges, with coffee from higher elevations and processed at controlled temperatures of 15 °C receiving the highest cup scores compared to coffee that was subjected to 30 °C. These results suggest that controlled temperature can be used to design standardized fermentation processes in order to enhance coffee quality through differentiated sensory profiles.
ISSN:2077-0472
2077-0472
DOI:10.3390/agriculture13061132