Loading…

DICAM in the Extracellular Vesicles from Astrocytes Attenuates Microglia Activation and Neuroinflammation

Cross-talk between astrocytes and microglia plays an important role in neuroinflammation and central sensitization, but the manner in which glial cells interact remains less well-understood. Herein, we investigated the role of dual immunoglobulin domain-containing cell adhesion molecules (DICAM) in...

Full description

Saved in:
Bibliographic Details
Published in:Cells (Basel, Switzerland) Switzerland), 2022-09, Vol.11 (19), p.2977
Main Authors: Han, Jin, Cho, Hyun-Jung, Park, Donghwi, Han, Seungwoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cross-talk between astrocytes and microglia plays an important role in neuroinflammation and central sensitization, but the manner in which glial cells interact remains less well-understood. Herein, we investigated the role of dual immunoglobulin domain-containing cell adhesion molecules (DICAM) in the glial cell interaction during neuroinflammation. DICAM knockout (KO) mice revealed enhanced nociceptive behaviors and glial cell activation of the tibia fracture with a cast immobilization model of complex regional pain syndrome (CRPS). DICAM was selectively secreted in reactive astrocytes, mainly via extracellular vesicles (EVs), and contributed to the regulation of neuroinflammation through the M2 polarization of microglia, which is dependent on the suppression of p38 MAPK signaling. In conclusion, DICAM secreted from reactive astrocytes through EVs was involved in the suppression of microglia activation and subsequent attenuation of neuroinflammation during central sensitization.
ISSN:2073-4409
2073-4409
DOI:10.3390/cells11192977