Loading…

Automated Food Weight and Content Estimation Using Computer Vision and AI Algorithms

The work aims to leverage computer vision and artificial intelligence technologies to quantify key components in food distribution services. Specifically, it focuses on dish counting, content identification, and portion size estimation in a dining hall setting. An RGB camera is employed to capture t...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-11, Vol.24 (23), p.7660
Main Authors: Gonzalez, Bryan, Garcia, Gonzalo, Velastin, Sergio A, GholamHosseini, Hamid, Tejeda, Lino, Farias, Gonzalo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3501-930caa144c1fdda214d93c84231d1c96a91295ecef2a6130dc008a599eccb4243
container_end_page
container_issue 23
container_start_page 7660
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Gonzalez, Bryan
Garcia, Gonzalo
Velastin, Sergio A
GholamHosseini, Hamid
Tejeda, Lino
Farias, Gonzalo
description The work aims to leverage computer vision and artificial intelligence technologies to quantify key components in food distribution services. Specifically, it focuses on dish counting, content identification, and portion size estimation in a dining hall setting. An RGB camera is employed to capture the tray delivery process in a self-service restaurant, providing test images for plate counting and content identification algorithm comparison, using standard evaluation metrics. The approach utilized the YOLO architecture, a widely recognized deep learning model for object detection and computer vision. The model is trained on labeled image data, and its performance is assessed using a precision-recall curve at a confidence threshold of 0.5, achieving a mean average precision (mAP) of 0.873, indicating robust overall performance. The weight estimation procedure combines computer vision techniques to measure food volume using both RGB and depth cameras. Subsequently, density models specific to each food type are applied to estimate the detected food weight. The estimation model's parameters are calibrated through experiments that generate volume-to-weight conversion tables for different food items. Validation of the system was conducted using rice and chicken, yielding error margins of 5.07% and 3.75%, respectively, demonstrating the feasibility and accuracy of the proposed method.
doi_str_mv 10.3390/s24237660
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d5e4cd1d9dd24768835be38b9ec68af4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819956811</galeid><doaj_id>oai_doaj_org_article_d5e4cd1d9dd24768835be38b9ec68af4</doaj_id><sourcerecordid>A819956811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3501-930caa144c1fdda214d93c84231d1c96a91295ecef2a6130dc008a599eccb4243</originalsourceid><addsrcrecordid>eNpdkk1v3CAQhq2qUfPRHPoHKku9tIdNGcAsnCprlaQrReolaY6IBexlZcMWcKX---JuukoiDqCZd56ZF01VfQB0RYhAXxOmmCwZQ2-qM6CYLjjG6O2z92l1ntIOIUwI4e-qUyIYZyDYWXXfTjmMKltT34Rg6kfr-m2ulTf1Kvhsfa6vU3ZF4YKvH5LzfUmM-ynbWP90aY7O4nZdt0MfosvbMb2vTjo1JHv5dF9UDzfX96vvi7sft-tVe7fQpEGwEARppYBSDZ0xCgM1gmhevIABLZgSgEVjte2wYkCQ0Qhx1Qhhtd4Ua-SiWh-4Jqid3McyZvwjg3LyXyDEXqqYnR6sNI2l2oARxmC6ZJyTZmMJ3xQW46qbWd8OrP20Ga3RxXlUwwvoy4x3W9mH3xKAUSqIKITPT4QYfk02ZTm6pO0wKG_DlCQBygQsOZ-bfXol3YUp-vJXs4pCI5ZiBl4dVL0qDpzvQmmsyzF2dDp427kSbzkI0TAOUAq-HAp0DClF2x3HByTnTZHHTSnaj8_9HpX_V4P8BUXmt48</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144159799</pqid></control><display><type>article</type><title>Automated Food Weight and Content Estimation Using Computer Vision and AI Algorithms</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Gonzalez, Bryan ; Garcia, Gonzalo ; Velastin, Sergio A ; GholamHosseini, Hamid ; Tejeda, Lino ; Farias, Gonzalo</creator><creatorcontrib>Gonzalez, Bryan ; Garcia, Gonzalo ; Velastin, Sergio A ; GholamHosseini, Hamid ; Tejeda, Lino ; Farias, Gonzalo</creatorcontrib><description>The work aims to leverage computer vision and artificial intelligence technologies to quantify key components in food distribution services. Specifically, it focuses on dish counting, content identification, and portion size estimation in a dining hall setting. An RGB camera is employed to capture the tray delivery process in a self-service restaurant, providing test images for plate counting and content identification algorithm comparison, using standard evaluation metrics. The approach utilized the YOLO architecture, a widely recognized deep learning model for object detection and computer vision. The model is trained on labeled image data, and its performance is assessed using a precision-recall curve at a confidence threshold of 0.5, achieving a mean average precision (mAP) of 0.873, indicating robust overall performance. The weight estimation procedure combines computer vision techniques to measure food volume using both RGB and depth cameras. Subsequently, density models specific to each food type are applied to estimate the detected food weight. The estimation model's parameters are calibrated through experiments that generate volume-to-weight conversion tables for different food items. Validation of the system was conducted using rice and chicken, yielding error margins of 5.07% and 3.75%, respectively, demonstrating the feasibility and accuracy of the proposed method.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24237660</identifier><identifier>PMID: 39686196</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Artificial Intelligence ; Automation ; Cameras ; Computer vision ; Deep Learning ; Food ; Food habits ; Food service ; food weight estimation ; Humans ; Identification ; Image Processing, Computer-Assisted - methods ; Ingredients ; Machine vision ; Restaurants</subject><ispartof>Sensors (Basel, Switzerland), 2024-11, Vol.24 (23), p.7660</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3501-930caa144c1fdda214d93c84231d1c96a91295ecef2a6130dc008a599eccb4243</cites><orcidid>0000-0001-9968-960X ; 0000-0001-6775-7137 ; 0000-0002-0135-2687 ; 0000-0003-2186-4126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3144159799/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3144159799?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39686196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonzalez, Bryan</creatorcontrib><creatorcontrib>Garcia, Gonzalo</creatorcontrib><creatorcontrib>Velastin, Sergio A</creatorcontrib><creatorcontrib>GholamHosseini, Hamid</creatorcontrib><creatorcontrib>Tejeda, Lino</creatorcontrib><creatorcontrib>Farias, Gonzalo</creatorcontrib><title>Automated Food Weight and Content Estimation Using Computer Vision and AI Algorithms</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The work aims to leverage computer vision and artificial intelligence technologies to quantify key components in food distribution services. Specifically, it focuses on dish counting, content identification, and portion size estimation in a dining hall setting. An RGB camera is employed to capture the tray delivery process in a self-service restaurant, providing test images for plate counting and content identification algorithm comparison, using standard evaluation metrics. The approach utilized the YOLO architecture, a widely recognized deep learning model for object detection and computer vision. The model is trained on labeled image data, and its performance is assessed using a precision-recall curve at a confidence threshold of 0.5, achieving a mean average precision (mAP) of 0.873, indicating robust overall performance. The weight estimation procedure combines computer vision techniques to measure food volume using both RGB and depth cameras. Subsequently, density models specific to each food type are applied to estimate the detected food weight. The estimation model's parameters are calibrated through experiments that generate volume-to-weight conversion tables for different food items. Validation of the system was conducted using rice and chicken, yielding error margins of 5.07% and 3.75%, respectively, demonstrating the feasibility and accuracy of the proposed method.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>Deep Learning</subject><subject>Food</subject><subject>Food habits</subject><subject>Food service</subject><subject>food weight estimation</subject><subject>Humans</subject><subject>Identification</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Ingredients</subject><subject>Machine vision</subject><subject>Restaurants</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v3CAQhq2qUfPRHPoHKku9tIdNGcAsnCprlaQrReolaY6IBexlZcMWcKX---JuukoiDqCZd56ZF01VfQB0RYhAXxOmmCwZQ2-qM6CYLjjG6O2z92l1ntIOIUwI4e-qUyIYZyDYWXXfTjmMKltT34Rg6kfr-m2ulTf1Kvhsfa6vU3ZF4YKvH5LzfUmM-ynbWP90aY7O4nZdt0MfosvbMb2vTjo1JHv5dF9UDzfX96vvi7sft-tVe7fQpEGwEARppYBSDZ0xCgM1gmhevIABLZgSgEVjte2wYkCQ0Qhx1Qhhtd4Ua-SiWh-4Jqid3McyZvwjg3LyXyDEXqqYnR6sNI2l2oARxmC6ZJyTZmMJ3xQW46qbWd8OrP20Ga3RxXlUwwvoy4x3W9mH3xKAUSqIKITPT4QYfk02ZTm6pO0wKG_DlCQBygQsOZ-bfXol3YUp-vJXs4pCI5ZiBl4dVL0qDpzvQmmsyzF2dDp427kSbzkI0TAOUAq-HAp0DClF2x3HByTnTZHHTSnaj8_9HpX_V4P8BUXmt48</recordid><startdate>20241129</startdate><enddate>20241129</enddate><creator>Gonzalez, Bryan</creator><creator>Garcia, Gonzalo</creator><creator>Velastin, Sergio A</creator><creator>GholamHosseini, Hamid</creator><creator>Tejeda, Lino</creator><creator>Farias, Gonzalo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9968-960X</orcidid><orcidid>https://orcid.org/0000-0001-6775-7137</orcidid><orcidid>https://orcid.org/0000-0002-0135-2687</orcidid><orcidid>https://orcid.org/0000-0003-2186-4126</orcidid></search><sort><creationdate>20241129</creationdate><title>Automated Food Weight and Content Estimation Using Computer Vision and AI Algorithms</title><author>Gonzalez, Bryan ; Garcia, Gonzalo ; Velastin, Sergio A ; GholamHosseini, Hamid ; Tejeda, Lino ; Farias, Gonzalo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3501-930caa144c1fdda214d93c84231d1c96a91295ecef2a6130dc008a599eccb4243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>Deep Learning</topic><topic>Food</topic><topic>Food habits</topic><topic>Food service</topic><topic>food weight estimation</topic><topic>Humans</topic><topic>Identification</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Ingredients</topic><topic>Machine vision</topic><topic>Restaurants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Bryan</creatorcontrib><creatorcontrib>Garcia, Gonzalo</creatorcontrib><creatorcontrib>Velastin, Sergio A</creatorcontrib><creatorcontrib>GholamHosseini, Hamid</creatorcontrib><creatorcontrib>Tejeda, Lino</creatorcontrib><creatorcontrib>Farias, Gonzalo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Bryan</au><au>Garcia, Gonzalo</au><au>Velastin, Sergio A</au><au>GholamHosseini, Hamid</au><au>Tejeda, Lino</au><au>Farias, Gonzalo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Food Weight and Content Estimation Using Computer Vision and AI Algorithms</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-11-29</date><risdate>2024</risdate><volume>24</volume><issue>23</issue><spage>7660</spage><pages>7660-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The work aims to leverage computer vision and artificial intelligence technologies to quantify key components in food distribution services. Specifically, it focuses on dish counting, content identification, and portion size estimation in a dining hall setting. An RGB camera is employed to capture the tray delivery process in a self-service restaurant, providing test images for plate counting and content identification algorithm comparison, using standard evaluation metrics. The approach utilized the YOLO architecture, a widely recognized deep learning model for object detection and computer vision. The model is trained on labeled image data, and its performance is assessed using a precision-recall curve at a confidence threshold of 0.5, achieving a mean average precision (mAP) of 0.873, indicating robust overall performance. The weight estimation procedure combines computer vision techniques to measure food volume using both RGB and depth cameras. Subsequently, density models specific to each food type are applied to estimate the detected food weight. The estimation model's parameters are calibrated through experiments that generate volume-to-weight conversion tables for different food items. Validation of the system was conducted using rice and chicken, yielding error margins of 5.07% and 3.75%, respectively, demonstrating the feasibility and accuracy of the proposed method.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39686196</pmid><doi>10.3390/s24237660</doi><orcidid>https://orcid.org/0000-0001-9968-960X</orcidid><orcidid>https://orcid.org/0000-0001-6775-7137</orcidid><orcidid>https://orcid.org/0000-0002-0135-2687</orcidid><orcidid>https://orcid.org/0000-0003-2186-4126</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-11, Vol.24 (23), p.7660
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d5e4cd1d9dd24768835be38b9ec68af4
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Artificial Intelligence
Automation
Cameras
Computer vision
Deep Learning
Food
Food habits
Food service
food weight estimation
Humans
Identification
Image Processing, Computer-Assisted - methods
Ingredients
Machine vision
Restaurants
title Automated Food Weight and Content Estimation Using Computer Vision and AI Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Food%20Weight%20and%20Content%20Estimation%20Using%20Computer%20Vision%20and%20AI%20Algorithms&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Gonzalez,%20Bryan&rft.date=2024-11-29&rft.volume=24&rft.issue=23&rft.spage=7660&rft.pages=7660-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24237660&rft_dat=%3Cgale_doaj_%3EA819956811%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3501-930caa144c1fdda214d93c84231d1c96a91295ecef2a6130dc008a599eccb4243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144159799&rft_id=info:pmid/39686196&rft_galeid=A819956811&rfr_iscdi=true