Loading…

Topological Contextuality and Anyonic Statistics of Photonic-Encoded Parafermions

Quasiparticle poisoning, expected to arise during the measurement of the Majorana zero-mode state, poses a fundamental problem for the realization of Majorana-based quantum computation. Parafermions, a natural generalization of Majorana fermions, can encode topological qudits immune to quasiparticle...

Full description

Saved in:
Bibliographic Details
Published in:PRX quantum 2021-08, Vol.2 (3), p.030323, Article 030323
Main Authors: Liu, Zheng-Hao, Sun, Kai, Pachos, Jiannis K., Yang, Mu, Meng, Yu, Liao, Yu-Wei, Li, Qiang, Wang, Jun-Feng, Luo, Ze-Yu, He, Yi-Fei, Huang, Dong-Yu, Ding, Guang-Rui, Xu, Jin-Shi, Han, Yong-Jian, Li, Chuan-Feng, Guo, Guang-Can
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-34aa4c44425f4520d199b533f9752dd7bb719b59084ddd80feade09e64093ff93
cites cdi_FETCH-LOGICAL-c360t-34aa4c44425f4520d199b533f9752dd7bb719b59084ddd80feade09e64093ff93
container_end_page
container_issue 3
container_start_page 030323
container_title PRX quantum
container_volume 2
creator Liu, Zheng-Hao
Sun, Kai
Pachos, Jiannis K.
Yang, Mu
Meng, Yu
Liao, Yu-Wei
Li, Qiang
Wang, Jun-Feng
Luo, Ze-Yu
He, Yi-Fei
Huang, Dong-Yu
Ding, Guang-Rui
Xu, Jin-Shi
Han, Yong-Jian
Li, Chuan-Feng
Guo, Guang-Can
description Quasiparticle poisoning, expected to arise during the measurement of the Majorana zero-mode state, poses a fundamental problem for the realization of Majorana-based quantum computation. Parafermions, a natural generalization of Majorana fermions, can encode topological qudits immune to quasiparticle poisoning. While parafermions are expected to emerge in superconducting fractional quantum Hall systems, they are not yet attainable with current technology. To bypass this problem, we employ a photonic quantum simulator to experimentally demonstrate the key components of parafermion-based universal quantum computation. Our contributions in this paper are twofold. First, by manipulating the photonic states, we realize Clifford-operator Berry phases that correspond to braiding statistics of parafermions. Second, we investigate the quantum contextuality in a topological system for the first time by demonstrating the contextuality of parafermion-encoded qudit states. Importantly, we find that the topologically encoded contextuality opens the way to magic state distillation, while both the contextuality and the braiding-induced Clifford gates are resilient against local noise. By introducing contextuality, our photonic quantum simulation provides the first step toward a physically robust methodology for realizing topological quantum computation.
doi_str_mv 10.1103/PRXQuantum.2.030323
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d5e828fde4444613b58ff7dc9e2e51cf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d5e828fde4444613b58ff7dc9e2e51cf</doaj_id><sourcerecordid>oai_doaj_org_article_d5e828fde4444613b58ff7dc9e2e51cf</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-34aa4c44425f4520d199b533f9752dd7bb719b59084ddd80feade09e64093ff93</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWGp_gZf9A1uTTLLdHEupWihYtYK3kM1HTdluSpKC_fdurainGd7hzfAQuiV4TAiGu9XL-_NBdfmwG9MxBgwULtCAVoKUAEJc_tuv0SilLcaYcgKEiQF6Xod9aMPGa9UWs9Bl-5kPqvX5WKjOFNPuGDqvi9essk_Z61QEV6w-Qj7hct7pYKwpVioqZ-POhy7doCun2mRHP3OI3u7n69ljuXx6WMymy1JDhXMJTCmmGWOUO8YpNkSIhgM4MeHUmEnTTEgPBK6ZMabGzipjsbAVwwKcEzBEi7PXBLWV--h3Kh5lUF5-gxA3UsX-49ZKw21Na2dsf45VBBpeOzcxWlhqOdGud8HZpWNIKVr36yNYniLLv8iSynNk-AIc-HN6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topological Contextuality and Anyonic Statistics of Photonic-Encoded Parafermions</title><source>Directory of Open Access Journals</source><creator>Liu, Zheng-Hao ; Sun, Kai ; Pachos, Jiannis K. ; Yang, Mu ; Meng, Yu ; Liao, Yu-Wei ; Li, Qiang ; Wang, Jun-Feng ; Luo, Ze-Yu ; He, Yi-Fei ; Huang, Dong-Yu ; Ding, Guang-Rui ; Xu, Jin-Shi ; Han, Yong-Jian ; Li, Chuan-Feng ; Guo, Guang-Can</creator><creatorcontrib>Liu, Zheng-Hao ; Sun, Kai ; Pachos, Jiannis K. ; Yang, Mu ; Meng, Yu ; Liao, Yu-Wei ; Li, Qiang ; Wang, Jun-Feng ; Luo, Ze-Yu ; He, Yi-Fei ; Huang, Dong-Yu ; Ding, Guang-Rui ; Xu, Jin-Shi ; Han, Yong-Jian ; Li, Chuan-Feng ; Guo, Guang-Can</creatorcontrib><description>Quasiparticle poisoning, expected to arise during the measurement of the Majorana zero-mode state, poses a fundamental problem for the realization of Majorana-based quantum computation. Parafermions, a natural generalization of Majorana fermions, can encode topological qudits immune to quasiparticle poisoning. While parafermions are expected to emerge in superconducting fractional quantum Hall systems, they are not yet attainable with current technology. To bypass this problem, we employ a photonic quantum simulator to experimentally demonstrate the key components of parafermion-based universal quantum computation. Our contributions in this paper are twofold. First, by manipulating the photonic states, we realize Clifford-operator Berry phases that correspond to braiding statistics of parafermions. Second, we investigate the quantum contextuality in a topological system for the first time by demonstrating the contextuality of parafermion-encoded qudit states. Importantly, we find that the topologically encoded contextuality opens the way to magic state distillation, while both the contextuality and the braiding-induced Clifford gates are resilient against local noise. By introducing contextuality, our photonic quantum simulation provides the first step toward a physically robust methodology for realizing topological quantum computation.</description><identifier>ISSN: 2691-3399</identifier><identifier>EISSN: 2691-3399</identifier><identifier>DOI: 10.1103/PRXQuantum.2.030323</identifier><language>eng</language><publisher>American Physical Society</publisher><ispartof>PRX quantum, 2021-08, Vol.2 (3), p.030323, Article 030323</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-34aa4c44425f4520d199b533f9752dd7bb719b59084ddd80feade09e64093ff93</citedby><cites>FETCH-LOGICAL-c360t-34aa4c44425f4520d199b533f9752dd7bb719b59084ddd80feade09e64093ff93</cites><orcidid>0000-0002-9775-4436 ; 0000-0001-8067-1477 ; 0000-0003-3018-7219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Zheng-Hao</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Pachos, Jiannis K.</creatorcontrib><creatorcontrib>Yang, Mu</creatorcontrib><creatorcontrib>Meng, Yu</creatorcontrib><creatorcontrib>Liao, Yu-Wei</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Wang, Jun-Feng</creatorcontrib><creatorcontrib>Luo, Ze-Yu</creatorcontrib><creatorcontrib>He, Yi-Fei</creatorcontrib><creatorcontrib>Huang, Dong-Yu</creatorcontrib><creatorcontrib>Ding, Guang-Rui</creatorcontrib><creatorcontrib>Xu, Jin-Shi</creatorcontrib><creatorcontrib>Han, Yong-Jian</creatorcontrib><creatorcontrib>Li, Chuan-Feng</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><title>Topological Contextuality and Anyonic Statistics of Photonic-Encoded Parafermions</title><title>PRX quantum</title><description>Quasiparticle poisoning, expected to arise during the measurement of the Majorana zero-mode state, poses a fundamental problem for the realization of Majorana-based quantum computation. Parafermions, a natural generalization of Majorana fermions, can encode topological qudits immune to quasiparticle poisoning. While parafermions are expected to emerge in superconducting fractional quantum Hall systems, they are not yet attainable with current technology. To bypass this problem, we employ a photonic quantum simulator to experimentally demonstrate the key components of parafermion-based universal quantum computation. Our contributions in this paper are twofold. First, by manipulating the photonic states, we realize Clifford-operator Berry phases that correspond to braiding statistics of parafermions. Second, we investigate the quantum contextuality in a topological system for the first time by demonstrating the contextuality of parafermion-encoded qudit states. Importantly, we find that the topologically encoded contextuality opens the way to magic state distillation, while both the contextuality and the braiding-induced Clifford gates are resilient against local noise. By introducing contextuality, our photonic quantum simulation provides the first step toward a physically robust methodology for realizing topological quantum computation.</description><issn>2691-3399</issn><issn>2691-3399</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQQIMoWGp_gZf9A1uTTLLdHEupWihYtYK3kM1HTdluSpKC_fdurainGd7hzfAQuiV4TAiGu9XL-_NBdfmwG9MxBgwULtCAVoKUAEJc_tuv0SilLcaYcgKEiQF6Xod9aMPGa9UWs9Bl-5kPqvX5WKjOFNPuGDqvi9essk_Z61QEV6w-Qj7hct7pYKwpVioqZ-POhy7doCun2mRHP3OI3u7n69ljuXx6WMymy1JDhXMJTCmmGWOUO8YpNkSIhgM4MeHUmEnTTEgPBK6ZMabGzipjsbAVwwKcEzBEi7PXBLWV--h3Kh5lUF5-gxA3UsX-49ZKw21Na2dsf45VBBpeOzcxWlhqOdGud8HZpWNIKVr36yNYniLLv8iSynNk-AIc-HN6</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Liu, Zheng-Hao</creator><creator>Sun, Kai</creator><creator>Pachos, Jiannis K.</creator><creator>Yang, Mu</creator><creator>Meng, Yu</creator><creator>Liao, Yu-Wei</creator><creator>Li, Qiang</creator><creator>Wang, Jun-Feng</creator><creator>Luo, Ze-Yu</creator><creator>He, Yi-Fei</creator><creator>Huang, Dong-Yu</creator><creator>Ding, Guang-Rui</creator><creator>Xu, Jin-Shi</creator><creator>Han, Yong-Jian</creator><creator>Li, Chuan-Feng</creator><creator>Guo, Guang-Can</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9775-4436</orcidid><orcidid>https://orcid.org/0000-0001-8067-1477</orcidid><orcidid>https://orcid.org/0000-0003-3018-7219</orcidid></search><sort><creationdate>20210801</creationdate><title>Topological Contextuality and Anyonic Statistics of Photonic-Encoded Parafermions</title><author>Liu, Zheng-Hao ; Sun, Kai ; Pachos, Jiannis K. ; Yang, Mu ; Meng, Yu ; Liao, Yu-Wei ; Li, Qiang ; Wang, Jun-Feng ; Luo, Ze-Yu ; He, Yi-Fei ; Huang, Dong-Yu ; Ding, Guang-Rui ; Xu, Jin-Shi ; Han, Yong-Jian ; Li, Chuan-Feng ; Guo, Guang-Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-34aa4c44425f4520d199b533f9752dd7bb719b59084ddd80feade09e64093ff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zheng-Hao</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Pachos, Jiannis K.</creatorcontrib><creatorcontrib>Yang, Mu</creatorcontrib><creatorcontrib>Meng, Yu</creatorcontrib><creatorcontrib>Liao, Yu-Wei</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Wang, Jun-Feng</creatorcontrib><creatorcontrib>Luo, Ze-Yu</creatorcontrib><creatorcontrib>He, Yi-Fei</creatorcontrib><creatorcontrib>Huang, Dong-Yu</creatorcontrib><creatorcontrib>Ding, Guang-Rui</creatorcontrib><creatorcontrib>Xu, Jin-Shi</creatorcontrib><creatorcontrib>Han, Yong-Jian</creatorcontrib><creatorcontrib>Li, Chuan-Feng</creatorcontrib><creatorcontrib>Guo, Guang-Can</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>PRX quantum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zheng-Hao</au><au>Sun, Kai</au><au>Pachos, Jiannis K.</au><au>Yang, Mu</au><au>Meng, Yu</au><au>Liao, Yu-Wei</au><au>Li, Qiang</au><au>Wang, Jun-Feng</au><au>Luo, Ze-Yu</au><au>He, Yi-Fei</au><au>Huang, Dong-Yu</au><au>Ding, Guang-Rui</au><au>Xu, Jin-Shi</au><au>Han, Yong-Jian</au><au>Li, Chuan-Feng</au><au>Guo, Guang-Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Contextuality and Anyonic Statistics of Photonic-Encoded Parafermions</atitle><jtitle>PRX quantum</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>2</volume><issue>3</issue><spage>030323</spage><pages>030323-</pages><artnum>030323</artnum><issn>2691-3399</issn><eissn>2691-3399</eissn><abstract>Quasiparticle poisoning, expected to arise during the measurement of the Majorana zero-mode state, poses a fundamental problem for the realization of Majorana-based quantum computation. Parafermions, a natural generalization of Majorana fermions, can encode topological qudits immune to quasiparticle poisoning. While parafermions are expected to emerge in superconducting fractional quantum Hall systems, they are not yet attainable with current technology. To bypass this problem, we employ a photonic quantum simulator to experimentally demonstrate the key components of parafermion-based universal quantum computation. Our contributions in this paper are twofold. First, by manipulating the photonic states, we realize Clifford-operator Berry phases that correspond to braiding statistics of parafermions. Second, we investigate the quantum contextuality in a topological system for the first time by demonstrating the contextuality of parafermion-encoded qudit states. Importantly, we find that the topologically encoded contextuality opens the way to magic state distillation, while both the contextuality and the braiding-induced Clifford gates are resilient against local noise. By introducing contextuality, our photonic quantum simulation provides the first step toward a physically robust methodology for realizing topological quantum computation.</abstract><pub>American Physical Society</pub><doi>10.1103/PRXQuantum.2.030323</doi><orcidid>https://orcid.org/0000-0002-9775-4436</orcidid><orcidid>https://orcid.org/0000-0001-8067-1477</orcidid><orcidid>https://orcid.org/0000-0003-3018-7219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2691-3399
ispartof PRX quantum, 2021-08, Vol.2 (3), p.030323, Article 030323
issn 2691-3399
2691-3399
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d5e828fde4444613b58ff7dc9e2e51cf
source Directory of Open Access Journals
title Topological Contextuality and Anyonic Statistics of Photonic-Encoded Parafermions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Contextuality%20and%20Anyonic%20Statistics%20of%20Photonic-Encoded%20Parafermions&rft.jtitle=PRX%20quantum&rft.au=Liu,%20Zheng-Hao&rft.date=2021-08-01&rft.volume=2&rft.issue=3&rft.spage=030323&rft.pages=030323-&rft.artnum=030323&rft.issn=2691-3399&rft.eissn=2691-3399&rft_id=info:doi/10.1103/PRXQuantum.2.030323&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_d5e828fde4444613b58ff7dc9e2e51cf%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-34aa4c44425f4520d199b533f9752dd7bb719b59084ddd80feade09e64093ff93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true