Loading…
Sample size calculations for indirect standardization
Indirect standardization, and its associated parameter the standardized incidence ratio, is a commonly-used tool in hospital profiling for comparing the incidence of negative outcomes between an index hospital and a larger population of reference hospitals, while adjusting for confounding covariates...
Saved in:
Published in: | BMC medical research methodology 2023-04, Vol.23 (1), p.90-90, Article 90 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c515t-953c8f818647c8d7a084156346aa08dffe92e9a95dbbeb933797bc2215b79fb33 |
container_end_page | 90 |
container_issue | 1 |
container_start_page | 90 |
container_title | BMC medical research methodology |
container_volume | 23 |
creator | Wang, Yifei Chu, Philip |
description | Indirect standardization, and its associated parameter the standardized incidence ratio, is a commonly-used tool in hospital profiling for comparing the incidence of negative outcomes between an index hospital and a larger population of reference hospitals, while adjusting for confounding covariates. In statistical inference of the standardized incidence ratio, traditional methods often assume the covariate distribution of the index hospital to be known. This assumption severely compromises one's ability to compute required sample sizes for high-powered indirect standardization, as in contexts where sample size calculation is desired, there are usually no means of knowing this distribution. This paper presents novel statistical methodology to perform sample size calculation for the standardized incidence ratio without knowing the covariate distribution of the index hospital and without collecting information from the index hospital to estimate this covariate distribution. We apply our methods to simulation studies and to real hospitals, to assess both its capabilities in a vacuum and in comparison to traditional assumptions of indirect standardization. |
doi_str_mv | 10.1186/s12874-023-01912-w |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d5fca6662b6f43108f4adc108d545fe8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745215303</galeid><doaj_id>oai_doaj_org_article_d5fca6662b6f43108f4adc108d545fe8</doaj_id><sourcerecordid>A745215303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-953c8f818647c8d7a084156346aa08dffe92e9a95dbbeb933797bc2215b79fb33</originalsourceid><addsrcrecordid>eNptUstuFDEQHCEiEgI_wAGNxCWXCW6_fUJRFCBSJA6Bs-XxY_FqZrzYM0Tk6_HuhpBFyIe2uqvK7lI1zRtA5wCSvy-ApaAdwqRDoAB3d8-aE6ACOoylfP7kfty8LGWNEAhJ-IvmmAhEgTJ10rBbM24G35Z471trBrsMZo5pKm1IuY2Ti9nbuS2zmZzJLt7vpq-ao2CG4l8_1NPm28err5efu5svn64vL246y4DNnWLEyiDrX6mw0gmDJAXGCeWmXl0IXmGvjGKu732vCBFK9BZjYL1QoSfktLne67pk1nqT42jyL51M1LtGyitt8hzt4LVjwRrOOe55oASQDNQ4W6tjlAUvq9aHvdZm6UfvrJ_mbIYD0cPJFL_rVfqpASEpQfCqcPagkNOPxZdZj7FYPwxm8mkpGsvqMOVEQYW--we6TkueqldbFEEA1f6_qJWpG8QppPqw3YrqC0FZ9YGgrQnn_0HV4_wYbZp8iLV_QMB7gs2plOzD45KA9DY5ep8cXZOjd8nRd5X09qk9j5Q_USG_AWEZvOg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803011145</pqid></control><display><type>article</type><title>Sample size calculations for indirect standardization</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Wang, Yifei ; Chu, Philip</creator><creatorcontrib>Wang, Yifei ; Chu, Philip</creatorcontrib><description>Indirect standardization, and its associated parameter the standardized incidence ratio, is a commonly-used tool in hospital profiling for comparing the incidence of negative outcomes between an index hospital and a larger population of reference hospitals, while adjusting for confounding covariates. In statistical inference of the standardized incidence ratio, traditional methods often assume the covariate distribution of the index hospital to be known. This assumption severely compromises one's ability to compute required sample sizes for high-powered indirect standardization, as in contexts where sample size calculation is desired, there are usually no means of knowing this distribution. This paper presents novel statistical methodology to perform sample size calculation for the standardized incidence ratio without knowing the covariate distribution of the index hospital and without collecting information from the index hospital to estimate this covariate distribution. We apply our methods to simulation studies and to real hospitals, to assess both its capabilities in a vacuum and in comparison to traditional assumptions of indirect standardization.</description><identifier>ISSN: 1471-2288</identifier><identifier>EISSN: 1471-2288</identifier><identifier>DOI: 10.1186/s12874-023-01912-w</identifier><identifier>PMID: 37041459</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Computer Simulation ; Evaluation ; Hospital profiling ; Hospitals ; Humans ; Hypothesis testing ; Indirect standardization ; Medical care ; Medical research ; Methods ; Patients ; Performance standards ; Quality management ; Radiation ; Reference Standards ; Sample Size ; Sample size calculation ; Simulation methods ; Standardization ; United States ; Variables</subject><ispartof>BMC medical research methodology, 2023-04, Vol.23 (1), p.90-90, Article 90</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c515t-953c8f818647c8d7a084156346aa08dffe92e9a95dbbeb933797bc2215b79fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088176/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2803011145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37041459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Chu, Philip</creatorcontrib><title>Sample size calculations for indirect standardization</title><title>BMC medical research methodology</title><addtitle>BMC Med Res Methodol</addtitle><description>Indirect standardization, and its associated parameter the standardized incidence ratio, is a commonly-used tool in hospital profiling for comparing the incidence of negative outcomes between an index hospital and a larger population of reference hospitals, while adjusting for confounding covariates. In statistical inference of the standardized incidence ratio, traditional methods often assume the covariate distribution of the index hospital to be known. This assumption severely compromises one's ability to compute required sample sizes for high-powered indirect standardization, as in contexts where sample size calculation is desired, there are usually no means of knowing this distribution. This paper presents novel statistical methodology to perform sample size calculation for the standardized incidence ratio without knowing the covariate distribution of the index hospital and without collecting information from the index hospital to estimate this covariate distribution. We apply our methods to simulation studies and to real hospitals, to assess both its capabilities in a vacuum and in comparison to traditional assumptions of indirect standardization.</description><subject>Computer Simulation</subject><subject>Evaluation</subject><subject>Hospital profiling</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypothesis testing</subject><subject>Indirect standardization</subject><subject>Medical care</subject><subject>Medical research</subject><subject>Methods</subject><subject>Patients</subject><subject>Performance standards</subject><subject>Quality management</subject><subject>Radiation</subject><subject>Reference Standards</subject><subject>Sample Size</subject><subject>Sample size calculation</subject><subject>Simulation methods</subject><subject>Standardization</subject><subject>United States</subject><subject>Variables</subject><issn>1471-2288</issn><issn>1471-2288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUstuFDEQHCEiEgI_wAGNxCWXCW6_fUJRFCBSJA6Bs-XxY_FqZrzYM0Tk6_HuhpBFyIe2uqvK7lI1zRtA5wCSvy-ApaAdwqRDoAB3d8-aE6ACOoylfP7kfty8LGWNEAhJ-IvmmAhEgTJ10rBbM24G35Z471trBrsMZo5pKm1IuY2Ti9nbuS2zmZzJLt7vpq-ao2CG4l8_1NPm28err5efu5svn64vL246y4DNnWLEyiDrX6mw0gmDJAXGCeWmXl0IXmGvjGKu732vCBFK9BZjYL1QoSfktLne67pk1nqT42jyL51M1LtGyitt8hzt4LVjwRrOOe55oASQDNQ4W6tjlAUvq9aHvdZm6UfvrJ_mbIYD0cPJFL_rVfqpASEpQfCqcPagkNOPxZdZj7FYPwxm8mkpGsvqMOVEQYW--we6TkueqldbFEEA1f6_qJWpG8QppPqw3YrqC0FZ9YGgrQnn_0HV4_wYbZp8iLV_QMB7gs2plOzD45KA9DY5ep8cXZOjd8nRd5X09qk9j5Q_USG_AWEZvOg</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Wang, Yifei</creator><creator>Chu, Philip</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230411</creationdate><title>Sample size calculations for indirect standardization</title><author>Wang, Yifei ; Chu, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-953c8f818647c8d7a084156346aa08dffe92e9a95dbbeb933797bc2215b79fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Simulation</topic><topic>Evaluation</topic><topic>Hospital profiling</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypothesis testing</topic><topic>Indirect standardization</topic><topic>Medical care</topic><topic>Medical research</topic><topic>Methods</topic><topic>Patients</topic><topic>Performance standards</topic><topic>Quality management</topic><topic>Radiation</topic><topic>Reference Standards</topic><topic>Sample Size</topic><topic>Sample size calculation</topic><topic>Simulation methods</topic><topic>Standardization</topic><topic>United States</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Chu, Philip</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC medical research methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yifei</au><au>Chu, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample size calculations for indirect standardization</atitle><jtitle>BMC medical research methodology</jtitle><addtitle>BMC Med Res Methodol</addtitle><date>2023-04-11</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>90</spage><epage>90</epage><pages>90-90</pages><artnum>90</artnum><issn>1471-2288</issn><eissn>1471-2288</eissn><abstract>Indirect standardization, and its associated parameter the standardized incidence ratio, is a commonly-used tool in hospital profiling for comparing the incidence of negative outcomes between an index hospital and a larger population of reference hospitals, while adjusting for confounding covariates. In statistical inference of the standardized incidence ratio, traditional methods often assume the covariate distribution of the index hospital to be known. This assumption severely compromises one's ability to compute required sample sizes for high-powered indirect standardization, as in contexts where sample size calculation is desired, there are usually no means of knowing this distribution. This paper presents novel statistical methodology to perform sample size calculation for the standardized incidence ratio without knowing the covariate distribution of the index hospital and without collecting information from the index hospital to estimate this covariate distribution. We apply our methods to simulation studies and to real hospitals, to assess both its capabilities in a vacuum and in comparison to traditional assumptions of indirect standardization.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37041459</pmid><doi>10.1186/s12874-023-01912-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2288 |
ispartof | BMC medical research methodology, 2023-04, Vol.23 (1), p.90-90, Article 90 |
issn | 1471-2288 1471-2288 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d5fca6662b6f43108f4adc108d545fe8 |
source | Publicly Available Content Database; PubMed Central(OpenAccess) |
subjects | Computer Simulation Evaluation Hospital profiling Hospitals Humans Hypothesis testing Indirect standardization Medical care Medical research Methods Patients Performance standards Quality management Radiation Reference Standards Sample Size Sample size calculation Simulation methods Standardization United States Variables |
title | Sample size calculations for indirect standardization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20size%20calculations%20for%20indirect%20standardization&rft.jtitle=BMC%20medical%20research%20methodology&rft.au=Wang,%20Yifei&rft.date=2023-04-11&rft.volume=23&rft.issue=1&rft.spage=90&rft.epage=90&rft.pages=90-90&rft.artnum=90&rft.issn=1471-2288&rft.eissn=1471-2288&rft_id=info:doi/10.1186/s12874-023-01912-w&rft_dat=%3Cgale_doaj_%3EA745215303%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-953c8f818647c8d7a084156346aa08dffe92e9a95dbbeb933797bc2215b79fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2803011145&rft_id=info:pmid/37041459&rft_galeid=A745215303&rfr_iscdi=true |