Loading…

Sample size calculations for indirect standardization

Indirect standardization, and its associated parameter the standardized incidence ratio, is a commonly-used tool in hospital profiling for comparing the incidence of negative outcomes between an index hospital and a larger population of reference hospitals, while adjusting for confounding covariates...

Full description

Saved in:
Bibliographic Details
Published in:BMC medical research methodology 2023-04, Vol.23 (1), p.90-90, Article 90
Main Authors: Wang, Yifei, Chu, Philip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c515t-953c8f818647c8d7a084156346aa08dffe92e9a95dbbeb933797bc2215b79fb33
container_end_page 90
container_issue 1
container_start_page 90
container_title BMC medical research methodology
container_volume 23
creator Wang, Yifei
Chu, Philip
description Indirect standardization, and its associated parameter the standardized incidence ratio, is a commonly-used tool in hospital profiling for comparing the incidence of negative outcomes between an index hospital and a larger population of reference hospitals, while adjusting for confounding covariates. In statistical inference of the standardized incidence ratio, traditional methods often assume the covariate distribution of the index hospital to be known. This assumption severely compromises one's ability to compute required sample sizes for high-powered indirect standardization, as in contexts where sample size calculation is desired, there are usually no means of knowing this distribution. This paper presents novel statistical methodology to perform sample size calculation for the standardized incidence ratio without knowing the covariate distribution of the index hospital and without collecting information from the index hospital to estimate this covariate distribution. We apply our methods to simulation studies and to real hospitals, to assess both its capabilities in a vacuum and in comparison to traditional assumptions of indirect standardization.
doi_str_mv 10.1186/s12874-023-01912-w
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d5fca6662b6f43108f4adc108d545fe8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745215303</galeid><doaj_id>oai_doaj_org_article_d5fca6662b6f43108f4adc108d545fe8</doaj_id><sourcerecordid>A745215303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-953c8f818647c8d7a084156346aa08dffe92e9a95dbbeb933797bc2215b79fb33</originalsourceid><addsrcrecordid>eNptUstuFDEQHCEiEgI_wAGNxCWXCW6_fUJRFCBSJA6Bs-XxY_FqZrzYM0Tk6_HuhpBFyIe2uqvK7lI1zRtA5wCSvy-ApaAdwqRDoAB3d8-aE6ACOoylfP7kfty8LGWNEAhJ-IvmmAhEgTJ10rBbM24G35Z471trBrsMZo5pKm1IuY2Ti9nbuS2zmZzJLt7vpq-ao2CG4l8_1NPm28err5efu5svn64vL246y4DNnWLEyiDrX6mw0gmDJAXGCeWmXl0IXmGvjGKu732vCBFK9BZjYL1QoSfktLne67pk1nqT42jyL51M1LtGyitt8hzt4LVjwRrOOe55oASQDNQ4W6tjlAUvq9aHvdZm6UfvrJ_mbIYD0cPJFL_rVfqpASEpQfCqcPagkNOPxZdZj7FYPwxm8mkpGsvqMOVEQYW--we6TkueqldbFEEA1f6_qJWpG8QppPqw3YrqC0FZ9YGgrQnn_0HV4_wYbZp8iLV_QMB7gs2plOzD45KA9DY5ep8cXZOjd8nRd5X09qk9j5Q_USG_AWEZvOg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803011145</pqid></control><display><type>article</type><title>Sample size calculations for indirect standardization</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Wang, Yifei ; Chu, Philip</creator><creatorcontrib>Wang, Yifei ; Chu, Philip</creatorcontrib><description>Indirect standardization, and its associated parameter the standardized incidence ratio, is a commonly-used tool in hospital profiling for comparing the incidence of negative outcomes between an index hospital and a larger population of reference hospitals, while adjusting for confounding covariates. In statistical inference of the standardized incidence ratio, traditional methods often assume the covariate distribution of the index hospital to be known. This assumption severely compromises one's ability to compute required sample sizes for high-powered indirect standardization, as in contexts where sample size calculation is desired, there are usually no means of knowing this distribution. This paper presents novel statistical methodology to perform sample size calculation for the standardized incidence ratio without knowing the covariate distribution of the index hospital and without collecting information from the index hospital to estimate this covariate distribution. We apply our methods to simulation studies and to real hospitals, to assess both its capabilities in a vacuum and in comparison to traditional assumptions of indirect standardization.</description><identifier>ISSN: 1471-2288</identifier><identifier>EISSN: 1471-2288</identifier><identifier>DOI: 10.1186/s12874-023-01912-w</identifier><identifier>PMID: 37041459</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Computer Simulation ; Evaluation ; Hospital profiling ; Hospitals ; Humans ; Hypothesis testing ; Indirect standardization ; Medical care ; Medical research ; Methods ; Patients ; Performance standards ; Quality management ; Radiation ; Reference Standards ; Sample Size ; Sample size calculation ; Simulation methods ; Standardization ; United States ; Variables</subject><ispartof>BMC medical research methodology, 2023-04, Vol.23 (1), p.90-90, Article 90</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c515t-953c8f818647c8d7a084156346aa08dffe92e9a95dbbeb933797bc2215b79fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088176/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2803011145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37041459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Chu, Philip</creatorcontrib><title>Sample size calculations for indirect standardization</title><title>BMC medical research methodology</title><addtitle>BMC Med Res Methodol</addtitle><description>Indirect standardization, and its associated parameter the standardized incidence ratio, is a commonly-used tool in hospital profiling for comparing the incidence of negative outcomes between an index hospital and a larger population of reference hospitals, while adjusting for confounding covariates. In statistical inference of the standardized incidence ratio, traditional methods often assume the covariate distribution of the index hospital to be known. This assumption severely compromises one's ability to compute required sample sizes for high-powered indirect standardization, as in contexts where sample size calculation is desired, there are usually no means of knowing this distribution. This paper presents novel statistical methodology to perform sample size calculation for the standardized incidence ratio without knowing the covariate distribution of the index hospital and without collecting information from the index hospital to estimate this covariate distribution. We apply our methods to simulation studies and to real hospitals, to assess both its capabilities in a vacuum and in comparison to traditional assumptions of indirect standardization.</description><subject>Computer Simulation</subject><subject>Evaluation</subject><subject>Hospital profiling</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypothesis testing</subject><subject>Indirect standardization</subject><subject>Medical care</subject><subject>Medical research</subject><subject>Methods</subject><subject>Patients</subject><subject>Performance standards</subject><subject>Quality management</subject><subject>Radiation</subject><subject>Reference Standards</subject><subject>Sample Size</subject><subject>Sample size calculation</subject><subject>Simulation methods</subject><subject>Standardization</subject><subject>United States</subject><subject>Variables</subject><issn>1471-2288</issn><issn>1471-2288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUstuFDEQHCEiEgI_wAGNxCWXCW6_fUJRFCBSJA6Bs-XxY_FqZrzYM0Tk6_HuhpBFyIe2uqvK7lI1zRtA5wCSvy-ApaAdwqRDoAB3d8-aE6ACOoylfP7kfty8LGWNEAhJ-IvmmAhEgTJ10rBbM24G35Z471trBrsMZo5pKm1IuY2Ti9nbuS2zmZzJLt7vpq-ao2CG4l8_1NPm28err5efu5svn64vL246y4DNnWLEyiDrX6mw0gmDJAXGCeWmXl0IXmGvjGKu732vCBFK9BZjYL1QoSfktLne67pk1nqT42jyL51M1LtGyitt8hzt4LVjwRrOOe55oASQDNQ4W6tjlAUvq9aHvdZm6UfvrJ_mbIYD0cPJFL_rVfqpASEpQfCqcPagkNOPxZdZj7FYPwxm8mkpGsvqMOVEQYW--we6TkueqldbFEEA1f6_qJWpG8QppPqw3YrqC0FZ9YGgrQnn_0HV4_wYbZp8iLV_QMB7gs2plOzD45KA9DY5ep8cXZOjd8nRd5X09qk9j5Q_USG_AWEZvOg</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Wang, Yifei</creator><creator>Chu, Philip</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230411</creationdate><title>Sample size calculations for indirect standardization</title><author>Wang, Yifei ; Chu, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-953c8f818647c8d7a084156346aa08dffe92e9a95dbbeb933797bc2215b79fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Simulation</topic><topic>Evaluation</topic><topic>Hospital profiling</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypothesis testing</topic><topic>Indirect standardization</topic><topic>Medical care</topic><topic>Medical research</topic><topic>Methods</topic><topic>Patients</topic><topic>Performance standards</topic><topic>Quality management</topic><topic>Radiation</topic><topic>Reference Standards</topic><topic>Sample Size</topic><topic>Sample size calculation</topic><topic>Simulation methods</topic><topic>Standardization</topic><topic>United States</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Chu, Philip</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC medical research methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yifei</au><au>Chu, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample size calculations for indirect standardization</atitle><jtitle>BMC medical research methodology</jtitle><addtitle>BMC Med Res Methodol</addtitle><date>2023-04-11</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>90</spage><epage>90</epage><pages>90-90</pages><artnum>90</artnum><issn>1471-2288</issn><eissn>1471-2288</eissn><abstract>Indirect standardization, and its associated parameter the standardized incidence ratio, is a commonly-used tool in hospital profiling for comparing the incidence of negative outcomes between an index hospital and a larger population of reference hospitals, while adjusting for confounding covariates. In statistical inference of the standardized incidence ratio, traditional methods often assume the covariate distribution of the index hospital to be known. This assumption severely compromises one's ability to compute required sample sizes for high-powered indirect standardization, as in contexts where sample size calculation is desired, there are usually no means of knowing this distribution. This paper presents novel statistical methodology to perform sample size calculation for the standardized incidence ratio without knowing the covariate distribution of the index hospital and without collecting information from the index hospital to estimate this covariate distribution. We apply our methods to simulation studies and to real hospitals, to assess both its capabilities in a vacuum and in comparison to traditional assumptions of indirect standardization.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37041459</pmid><doi>10.1186/s12874-023-01912-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2288
ispartof BMC medical research methodology, 2023-04, Vol.23 (1), p.90-90, Article 90
issn 1471-2288
1471-2288
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d5fca6662b6f43108f4adc108d545fe8
source Publicly Available Content Database; PubMed Central(OpenAccess)
subjects Computer Simulation
Evaluation
Hospital profiling
Hospitals
Humans
Hypothesis testing
Indirect standardization
Medical care
Medical research
Methods
Patients
Performance standards
Quality management
Radiation
Reference Standards
Sample Size
Sample size calculation
Simulation methods
Standardization
United States
Variables
title Sample size calculations for indirect standardization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20size%20calculations%20for%20indirect%20standardization&rft.jtitle=BMC%20medical%20research%20methodology&rft.au=Wang,%20Yifei&rft.date=2023-04-11&rft.volume=23&rft.issue=1&rft.spage=90&rft.epage=90&rft.pages=90-90&rft.artnum=90&rft.issn=1471-2288&rft.eissn=1471-2288&rft_id=info:doi/10.1186/s12874-023-01912-w&rft_dat=%3Cgale_doaj_%3EA745215303%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-953c8f818647c8d7a084156346aa08dffe92e9a95dbbeb933797bc2215b79fb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2803011145&rft_id=info:pmid/37041459&rft_galeid=A745215303&rfr_iscdi=true