Loading…

New Results on the Quasilinearization Method for Time Scales

We have developed the generalized quasilinearization method (QM) for an initial value problem (IVP) of dynamic equations on time scales by using comparison theorems with a coupled lower solution (LS) and upper solution (US) of the natural type. Under some conditions, we observed that the solutions c...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2024-07, Vol.12 (14), p.2207
Main Authors: Çetin, Şahap, Yılmaz, Yalçın, Yakar, Coşkun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c254t-4fd1a4fbc643452b155caf9e00ad45b54624dfb5508580e0361406eeffa56a433
container_end_page
container_issue 14
container_start_page 2207
container_title Mathematics (Basel)
container_volume 12
creator Çetin, Şahap
Yılmaz, Yalçın
Yakar, Coşkun
description We have developed the generalized quasilinearization method (QM) for an initial value problem (IVP) of dynamic equations on time scales by using comparison theorems with a coupled lower solution (LS) and upper solution (US) of the natural type. Under some conditions, we observed that the solutions converged to the unique solution of the problem uniformly and monotonically, and the rate of convergence was investigated.
doi_str_mv 10.3390/math12142207
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d63447ea201f448d9b0ec254b20140ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d63447ea201f448d9b0ec254b20140ce</doaj_id><sourcerecordid>3084962097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-4fd1a4fbc643452b155caf9e00ad45b54624dfb5508580e0361406eeffa56a433</originalsourceid><addsrcrecordid>eNpNUF1LAzEQDKJgqX3zBxz46mk-Nnc98EWKH4WqqPU55O42NuXa1CSH6K83tSLdl11mh5lhCDll9EKIil6udFwwzoBzWh6QAee8zMv0ONy7j8kohCVNUzExhmpArh7xM3vB0HcxZG6dxQVmz70OtrNr1N5-62gT_IBx4drMOJ_N7Qqz10Z3GE7IkdFdwNHfHpK325v55D6fPd1NJ9ezvOESYg6mZRpM3RQgQPKaSdloUyGlugVZSyg4tKaWko7lmCIVBQNaIBqjZaFBiCGZ7nRbp5dq4-1K-y_ltFW_gPPvSvtomw5VWwiAEjWnzACM26qmuE1RJwBog0nrbKe18e6jxxDV0vV-neIrQVMlBadVmVjnO1bjXQgezb8ro2pbt9qvW_wAPfRwpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084962097</pqid></control><display><type>article</type><title>New Results on the Quasilinearization Method for Time Scales</title><source>Publicly Available Content Database</source><creator>Çetin, Şahap ; Yılmaz, Yalçın ; Yakar, Coşkun</creator><creatorcontrib>Çetin, Şahap ; Yılmaz, Yalçın ; Yakar, Coşkun</creatorcontrib><description>We have developed the generalized quasilinearization method (QM) for an initial value problem (IVP) of dynamic equations on time scales by using comparison theorems with a coupled lower solution (LS) and upper solution (US) of the natural type. Under some conditions, we observed that the solutions converged to the unique solution of the problem uniformly and monotonically, and the rate of convergence was investigated.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12142207</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Boundary value problems ; Dynamical systems ; extremal solutions ; Integral equations ; Linear equations ; Ordinary differential equations ; quadratic convergence ; quasilinearization ; Time ; time scale ; weak convergence</subject><ispartof>Mathematics (Basel), 2024-07, Vol.12 (14), p.2207</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-4fd1a4fbc643452b155caf9e00ad45b54624dfb5508580e0361406eeffa56a433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084962097/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084962097?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Çetin, Şahap</creatorcontrib><creatorcontrib>Yılmaz, Yalçın</creatorcontrib><creatorcontrib>Yakar, Coşkun</creatorcontrib><title>New Results on the Quasilinearization Method for Time Scales</title><title>Mathematics (Basel)</title><description>We have developed the generalized quasilinearization method (QM) for an initial value problem (IVP) of dynamic equations on time scales by using comparison theorems with a coupled lower solution (LS) and upper solution (US) of the natural type. Under some conditions, we observed that the solutions converged to the unique solution of the problem uniformly and monotonically, and the rate of convergence was investigated.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Dynamical systems</subject><subject>extremal solutions</subject><subject>Integral equations</subject><subject>Linear equations</subject><subject>Ordinary differential equations</subject><subject>quadratic convergence</subject><subject>quasilinearization</subject><subject>Time</subject><subject>time scale</subject><subject>weak convergence</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUF1LAzEQDKJgqX3zBxz46mk-Nnc98EWKH4WqqPU55O42NuXa1CSH6K83tSLdl11mh5lhCDll9EKIil6udFwwzoBzWh6QAee8zMv0ONy7j8kohCVNUzExhmpArh7xM3vB0HcxZG6dxQVmz70OtrNr1N5-62gT_IBx4drMOJ_N7Qqz10Z3GE7IkdFdwNHfHpK325v55D6fPd1NJ9ezvOESYg6mZRpM3RQgQPKaSdloUyGlugVZSyg4tKaWko7lmCIVBQNaIBqjZaFBiCGZ7nRbp5dq4-1K-y_ltFW_gPPvSvtomw5VWwiAEjWnzACM26qmuE1RJwBog0nrbKe18e6jxxDV0vV-neIrQVMlBadVmVjnO1bjXQgezb8ro2pbt9qvW_wAPfRwpQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Çetin, Şahap</creator><creator>Yılmaz, Yalçın</creator><creator>Yakar, Coşkun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20240701</creationdate><title>New Results on the Quasilinearization Method for Time Scales</title><author>Çetin, Şahap ; Yılmaz, Yalçın ; Yakar, Coşkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-4fd1a4fbc643452b155caf9e00ad45b54624dfb5508580e0361406eeffa56a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Dynamical systems</topic><topic>extremal solutions</topic><topic>Integral equations</topic><topic>Linear equations</topic><topic>Ordinary differential equations</topic><topic>quadratic convergence</topic><topic>quasilinearization</topic><topic>Time</topic><topic>time scale</topic><topic>weak convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çetin, Şahap</creatorcontrib><creatorcontrib>Yılmaz, Yalçın</creatorcontrib><creatorcontrib>Yakar, Coşkun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çetin, Şahap</au><au>Yılmaz, Yalçın</au><au>Yakar, Coşkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Results on the Quasilinearization Method for Time Scales</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>12</volume><issue>14</issue><spage>2207</spage><pages>2207-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>We have developed the generalized quasilinearization method (QM) for an initial value problem (IVP) of dynamic equations on time scales by using comparison theorems with a coupled lower solution (LS) and upper solution (US) of the natural type. Under some conditions, we observed that the solutions converged to the unique solution of the problem uniformly and monotonically, and the rate of convergence was investigated.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12142207</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2024-07, Vol.12 (14), p.2207
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d63447ea201f448d9b0ec254b20140ce
source Publicly Available Content Database
subjects Approximation
Boundary value problems
Dynamical systems
extremal solutions
Integral equations
Linear equations
Ordinary differential equations
quadratic convergence
quasilinearization
Time
time scale
weak convergence
title New Results on the Quasilinearization Method for Time Scales
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Results%20on%20the%20Quasilinearization%20Method%20for%20Time%20Scales&rft.jtitle=Mathematics%20(Basel)&rft.au=%C3%87etin,%20%C5%9Eahap&rft.date=2024-07-01&rft.volume=12&rft.issue=14&rft.spage=2207&rft.pages=2207-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12142207&rft_dat=%3Cproquest_doaj_%3E3084962097%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-4fd1a4fbc643452b155caf9e00ad45b54624dfb5508580e0361406eeffa56a433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084962097&rft_id=info:pmid/&rfr_iscdi=true