Loading…
New Results on the Quasilinearization Method for Time Scales
We have developed the generalized quasilinearization method (QM) for an initial value problem (IVP) of dynamic equations on time scales by using comparison theorems with a coupled lower solution (LS) and upper solution (US) of the natural type. Under some conditions, we observed that the solutions c...
Saved in:
Published in: | Mathematics (Basel) 2024-07, Vol.12 (14), p.2207 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c254t-4fd1a4fbc643452b155caf9e00ad45b54624dfb5508580e0361406eeffa56a433 |
container_end_page | |
container_issue | 14 |
container_start_page | 2207 |
container_title | Mathematics (Basel) |
container_volume | 12 |
creator | Çetin, Şahap Yılmaz, Yalçın Yakar, Coşkun |
description | We have developed the generalized quasilinearization method (QM) for an initial value problem (IVP) of dynamic equations on time scales by using comparison theorems with a coupled lower solution (LS) and upper solution (US) of the natural type. Under some conditions, we observed that the solutions converged to the unique solution of the problem uniformly and monotonically, and the rate of convergence was investigated. |
doi_str_mv | 10.3390/math12142207 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d63447ea201f448d9b0ec254b20140ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d63447ea201f448d9b0ec254b20140ce</doaj_id><sourcerecordid>3084962097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-4fd1a4fbc643452b155caf9e00ad45b54624dfb5508580e0361406eeffa56a433</originalsourceid><addsrcrecordid>eNpNUF1LAzEQDKJgqX3zBxz46mk-Nnc98EWKH4WqqPU55O42NuXa1CSH6K83tSLdl11mh5lhCDll9EKIil6udFwwzoBzWh6QAee8zMv0ONy7j8kohCVNUzExhmpArh7xM3vB0HcxZG6dxQVmz70OtrNr1N5-62gT_IBx4drMOJ_N7Qqz10Z3GE7IkdFdwNHfHpK325v55D6fPd1NJ9ezvOESYg6mZRpM3RQgQPKaSdloUyGlugVZSyg4tKaWko7lmCIVBQNaIBqjZaFBiCGZ7nRbp5dq4-1K-y_ltFW_gPPvSvtomw5VWwiAEjWnzACM26qmuE1RJwBog0nrbKe18e6jxxDV0vV-neIrQVMlBadVmVjnO1bjXQgezb8ro2pbt9qvW_wAPfRwpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084962097</pqid></control><display><type>article</type><title>New Results on the Quasilinearization Method for Time Scales</title><source>Publicly Available Content Database</source><creator>Çetin, Şahap ; Yılmaz, Yalçın ; Yakar, Coşkun</creator><creatorcontrib>Çetin, Şahap ; Yılmaz, Yalçın ; Yakar, Coşkun</creatorcontrib><description>We have developed the generalized quasilinearization method (QM) for an initial value problem (IVP) of dynamic equations on time scales by using comparison theorems with a coupled lower solution (LS) and upper solution (US) of the natural type. Under some conditions, we observed that the solutions converged to the unique solution of the problem uniformly and monotonically, and the rate of convergence was investigated.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12142207</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Boundary value problems ; Dynamical systems ; extremal solutions ; Integral equations ; Linear equations ; Ordinary differential equations ; quadratic convergence ; quasilinearization ; Time ; time scale ; weak convergence</subject><ispartof>Mathematics (Basel), 2024-07, Vol.12 (14), p.2207</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-4fd1a4fbc643452b155caf9e00ad45b54624dfb5508580e0361406eeffa56a433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084962097/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084962097?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Çetin, Şahap</creatorcontrib><creatorcontrib>Yılmaz, Yalçın</creatorcontrib><creatorcontrib>Yakar, Coşkun</creatorcontrib><title>New Results on the Quasilinearization Method for Time Scales</title><title>Mathematics (Basel)</title><description>We have developed the generalized quasilinearization method (QM) for an initial value problem (IVP) of dynamic equations on time scales by using comparison theorems with a coupled lower solution (LS) and upper solution (US) of the natural type. Under some conditions, we observed that the solutions converged to the unique solution of the problem uniformly and monotonically, and the rate of convergence was investigated.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Dynamical systems</subject><subject>extremal solutions</subject><subject>Integral equations</subject><subject>Linear equations</subject><subject>Ordinary differential equations</subject><subject>quadratic convergence</subject><subject>quasilinearization</subject><subject>Time</subject><subject>time scale</subject><subject>weak convergence</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUF1LAzEQDKJgqX3zBxz46mk-Nnc98EWKH4WqqPU55O42NuXa1CSH6K83tSLdl11mh5lhCDll9EKIil6udFwwzoBzWh6QAee8zMv0ONy7j8kohCVNUzExhmpArh7xM3vB0HcxZG6dxQVmz70OtrNr1N5-62gT_IBx4drMOJ_N7Qqz10Z3GE7IkdFdwNHfHpK325v55D6fPd1NJ9ezvOESYg6mZRpM3RQgQPKaSdloUyGlugVZSyg4tKaWko7lmCIVBQNaIBqjZaFBiCGZ7nRbp5dq4-1K-y_ltFW_gPPvSvtomw5VWwiAEjWnzACM26qmuE1RJwBog0nrbKe18e6jxxDV0vV-neIrQVMlBadVmVjnO1bjXQgezb8ro2pbt9qvW_wAPfRwpQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Çetin, Şahap</creator><creator>Yılmaz, Yalçın</creator><creator>Yakar, Coşkun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20240701</creationdate><title>New Results on the Quasilinearization Method for Time Scales</title><author>Çetin, Şahap ; Yılmaz, Yalçın ; Yakar, Coşkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-4fd1a4fbc643452b155caf9e00ad45b54624dfb5508580e0361406eeffa56a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Dynamical systems</topic><topic>extremal solutions</topic><topic>Integral equations</topic><topic>Linear equations</topic><topic>Ordinary differential equations</topic><topic>quadratic convergence</topic><topic>quasilinearization</topic><topic>Time</topic><topic>time scale</topic><topic>weak convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çetin, Şahap</creatorcontrib><creatorcontrib>Yılmaz, Yalçın</creatorcontrib><creatorcontrib>Yakar, Coşkun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çetin, Şahap</au><au>Yılmaz, Yalçın</au><au>Yakar, Coşkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Results on the Quasilinearization Method for Time Scales</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>12</volume><issue>14</issue><spage>2207</spage><pages>2207-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>We have developed the generalized quasilinearization method (QM) for an initial value problem (IVP) of dynamic equations on time scales by using comparison theorems with a coupled lower solution (LS) and upper solution (US) of the natural type. Under some conditions, we observed that the solutions converged to the unique solution of the problem uniformly and monotonically, and the rate of convergence was investigated.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12142207</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2024-07, Vol.12 (14), p.2207 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d63447ea201f448d9b0ec254b20140ce |
source | Publicly Available Content Database |
subjects | Approximation Boundary value problems Dynamical systems extremal solutions Integral equations Linear equations Ordinary differential equations quadratic convergence quasilinearization Time time scale weak convergence |
title | New Results on the Quasilinearization Method for Time Scales |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Results%20on%20the%20Quasilinearization%20Method%20for%20Time%20Scales&rft.jtitle=Mathematics%20(Basel)&rft.au=%C3%87etin,%20%C5%9Eahap&rft.date=2024-07-01&rft.volume=12&rft.issue=14&rft.spage=2207&rft.pages=2207-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12142207&rft_dat=%3Cproquest_doaj_%3E3084962097%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-4fd1a4fbc643452b155caf9e00ad45b54624dfb5508580e0361406eeffa56a433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084962097&rft_id=info:pmid/&rfr_iscdi=true |