Loading…

Dieckol, Derived from the Edible Brown Algae Ecklonia cava, Attenuates Methylglyoxal-Associated Diabetic Nephropathy by Suppressing AGE-RAGE Interaction

The formation of advanced glycation end products (AGE) is linked to the pathogenesis of diabetic nephropathy. The aim of this work was to assess the therapeutic potential and underlying mechanism of action of dieckol (DK), isolated from , on renal damage induced by methylglyoxal (MGO) in mouse glome...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants 2023-02, Vol.12 (3), p.593
Main Authors: Cho, Chi-Heung, Yoo, Guijae, Kim, Mingyeong, Kurniawati, Ulfah Dwi, Choi, In-Wook, Lee, Sang-Hoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The formation of advanced glycation end products (AGE) is linked to the pathogenesis of diabetic nephropathy. The aim of this work was to assess the therapeutic potential and underlying mechanism of action of dieckol (DK), isolated from , on renal damage induced by methylglyoxal (MGO) in mouse glomerular mesangial cells. The antiglycation properties of DK were evaluated using ELISA. We conducted molecular docking, immunofluorescence analysis, and Western blotting to confirm the mechanism by which DK prevents AGE-related diabetic nephropathy. DK treatment exhibited antiglycation properties through the inhibition of AGE production, inhibition of cross-linking between AGE and collagen, and breaking of its cross-linking. DK pretreatment exhibited protective effects on renal cells by suppressing MGO-induced intracellular reactive oxygen species (ROS) formation, intracellular MGO and AGE accumulation, activation of the apoptosis cascade and apoptosis-related protein expression, activation of receptor for AGE (RAGE) protein expression, and suppression of the glyoxalase system. Furthermore, DK exhibited a stronger binding affinity for RAGE than AGE, which was confirmed as exerting a competitive inhibitory effect on the AGE-RAGE interaction. These results demonstrated that DK is a potential natural AGE inhibitor that can be utilized to prevent and treat AGE-induced diabetic nephropathy.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox12030593