Loading…
Global Stability of a Lotka-Volterra Competition-Diffusion-Advection System with Different Positive Diffusion Distributions
In this paper, the problem of a Lotka–Volterra competition–diffusion–advection system between two competing biological organisms in a spatially heterogeneous environments is investigated. When two biological organisms are competing for different fundamental resources, and their advection and diffusi...
Saved in:
Published in: | Axioms 2021-09, Vol.10 (3), p.166 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-54ed5cfd76d173febd4d228b9fe0791b112404468f60273ff126e930bfc6f7833 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-54ed5cfd76d173febd4d228b9fe0791b112404468f60273ff126e930bfc6f7833 |
container_end_page | |
container_issue | 3 |
container_start_page | 166 |
container_title | Axioms |
container_volume | 10 |
creator | Chen, Lili Lin, Shilei Zhao, Yanfeng |
description | In this paper, the problem of a Lotka–Volterra competition–diffusion–advection system between two competing biological organisms in a spatially heterogeneous environments is investigated. When two biological organisms are competing for different fundamental resources, and their advection and diffusion strategies follow different positive diffusion distributions, the functions of specific competition ability are variable. By virtue of the Lyapunov functional method, we discuss the global stability of a non-homogeneous steady-state. Furthermore, the global stability result is also obtained when one of the two organisms has no diffusion ability and is not affected by advection. |
doi_str_mv | 10.3390/axioms10030166 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d67429ef7293420982c8d584d84cb0f0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d67429ef7293420982c8d584d84cb0f0</doaj_id><sourcerecordid>2576380247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-54ed5cfd76d173febd4d228b9fe0791b112404468f60273ff126e930bfc6f7833</originalsourceid><addsrcrecordid>eNpVUU1LAzEQXURBUa-eA55XJx-bZI9SvwoFharXkN0kmrptapKqxT_vrpWic5nHm_feDExRnGA4o7SGc_3pwzxhAAqY853igICoSswl7P7B-8VxSjPoq8ZUYnpQfN10odEdmmbd-M7nNQoOaTQJ-VWXT6HLNkaNRmG-tNlnHxblpXdulQZ0Yd5tO3Bouk7ZztGHzy9omNtoFxndh9Rb3i3aWnqUcvTNanClo2LP6S7Z499-WDxeXz2MbsvJ3c14dDEpWypoLitmTdU6I7jBgjrbGGYIkU3tLIgaNxgTBoxx6TiQXuAw4bam0LiWOyEpPSzGm1wT9Ewto5_ruFZBe_VDhPisdMy-7awyXDBSWydITRmBWpJWmkoyI1nbgIM-63STtYzhbWVTVrOwiov-fEUqwakEwkSvOtuo2hhSitZtt2JQw7_U_3_Rb5vjipQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576380247</pqid></control><display><type>article</type><title>Global Stability of a Lotka-Volterra Competition-Diffusion-Advection System with Different Positive Diffusion Distributions</title><source>Access via ProQuest (Open Access)</source><creator>Chen, Lili ; Lin, Shilei ; Zhao, Yanfeng</creator><creatorcontrib>Chen, Lili ; Lin, Shilei ; Zhao, Yanfeng</creatorcontrib><description>In this paper, the problem of a Lotka–Volterra competition–diffusion–advection system between two competing biological organisms in a spatially heterogeneous environments is investigated. When two biological organisms are competing for different fundamental resources, and their advection and diffusion strategies follow different positive diffusion distributions, the functions of specific competition ability are variable. By virtue of the Lyapunov functional method, we discuss the global stability of a non-homogeneous steady-state. Furthermore, the global stability result is also obtained when one of the two organisms has no diffusion ability and is not affected by advection.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms10030166</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Advection ; Competition ; competition-diffusion-advection ; Diffusion ; global stability ; Hypotheses ; Organisms ; spatially heterogeneous ; Stability ; steady-state solution</subject><ispartof>Axioms, 2021-09, Vol.10 (3), p.166</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-54ed5cfd76d173febd4d228b9fe0791b112404468f60273ff126e930bfc6f7833</citedby><cites>FETCH-LOGICAL-c373t-54ed5cfd76d173febd4d228b9fe0791b112404468f60273ff126e930bfc6f7833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576380247/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576380247?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Chen, Lili</creatorcontrib><creatorcontrib>Lin, Shilei</creatorcontrib><creatorcontrib>Zhao, Yanfeng</creatorcontrib><title>Global Stability of a Lotka-Volterra Competition-Diffusion-Advection System with Different Positive Diffusion Distributions</title><title>Axioms</title><description>In this paper, the problem of a Lotka–Volterra competition–diffusion–advection system between two competing biological organisms in a spatially heterogeneous environments is investigated. When two biological organisms are competing for different fundamental resources, and their advection and diffusion strategies follow different positive diffusion distributions, the functions of specific competition ability are variable. By virtue of the Lyapunov functional method, we discuss the global stability of a non-homogeneous steady-state. Furthermore, the global stability result is also obtained when one of the two organisms has no diffusion ability and is not affected by advection.</description><subject>Advection</subject><subject>Competition</subject><subject>competition-diffusion-advection</subject><subject>Diffusion</subject><subject>global stability</subject><subject>Hypotheses</subject><subject>Organisms</subject><subject>spatially heterogeneous</subject><subject>Stability</subject><subject>steady-state solution</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1LAzEQXURBUa-eA55XJx-bZI9SvwoFharXkN0kmrptapKqxT_vrpWic5nHm_feDExRnGA4o7SGc_3pwzxhAAqY853igICoSswl7P7B-8VxSjPoq8ZUYnpQfN10odEdmmbd-M7nNQoOaTQJ-VWXT6HLNkaNRmG-tNlnHxblpXdulQZ0Yd5tO3Bouk7ZztGHzy9omNtoFxndh9Rb3i3aWnqUcvTNanClo2LP6S7Z499-WDxeXz2MbsvJ3c14dDEpWypoLitmTdU6I7jBgjrbGGYIkU3tLIgaNxgTBoxx6TiQXuAw4bam0LiWOyEpPSzGm1wT9Ewto5_ruFZBe_VDhPisdMy-7awyXDBSWydITRmBWpJWmkoyI1nbgIM-63STtYzhbWVTVrOwiov-fEUqwakEwkSvOtuo2hhSitZtt2JQw7_U_3_Rb5vjipQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Chen, Lili</creator><creator>Lin, Shilei</creator><creator>Zhao, Yanfeng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20210901</creationdate><title>Global Stability of a Lotka-Volterra Competition-Diffusion-Advection System with Different Positive Diffusion Distributions</title><author>Chen, Lili ; Lin, Shilei ; Zhao, Yanfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-54ed5cfd76d173febd4d228b9fe0791b112404468f60273ff126e930bfc6f7833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advection</topic><topic>Competition</topic><topic>competition-diffusion-advection</topic><topic>Diffusion</topic><topic>global stability</topic><topic>Hypotheses</topic><topic>Organisms</topic><topic>spatially heterogeneous</topic><topic>Stability</topic><topic>steady-state solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lili</creatorcontrib><creatorcontrib>Lin, Shilei</creatorcontrib><creatorcontrib>Zhao, Yanfeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lili</au><au>Lin, Shilei</au><au>Zhao, Yanfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Stability of a Lotka-Volterra Competition-Diffusion-Advection System with Different Positive Diffusion Distributions</atitle><jtitle>Axioms</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>10</volume><issue>3</issue><spage>166</spage><pages>166-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>In this paper, the problem of a Lotka–Volterra competition–diffusion–advection system between two competing biological organisms in a spatially heterogeneous environments is investigated. When two biological organisms are competing for different fundamental resources, and their advection and diffusion strategies follow different positive diffusion distributions, the functions of specific competition ability are variable. By virtue of the Lyapunov functional method, we discuss the global stability of a non-homogeneous steady-state. Furthermore, the global stability result is also obtained when one of the two organisms has no diffusion ability and is not affected by advection.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms10030166</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1680 |
ispartof | Axioms, 2021-09, Vol.10 (3), p.166 |
issn | 2075-1680 2075-1680 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d67429ef7293420982c8d584d84cb0f0 |
source | Access via ProQuest (Open Access) |
subjects | Advection Competition competition-diffusion-advection Diffusion global stability Hypotheses Organisms spatially heterogeneous Stability steady-state solution |
title | Global Stability of a Lotka-Volterra Competition-Diffusion-Advection System with Different Positive Diffusion Distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Stability%20of%20a%20Lotka-Volterra%20Competition-Diffusion-Advection%20System%20with%20Different%20Positive%20Diffusion%20Distributions&rft.jtitle=Axioms&rft.au=Chen,%20Lili&rft.date=2021-09-01&rft.volume=10&rft.issue=3&rft.spage=166&rft.pages=166-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms10030166&rft_dat=%3Cproquest_doaj_%3E2576380247%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-54ed5cfd76d173febd4d228b9fe0791b112404468f60273ff126e930bfc6f7833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576380247&rft_id=info:pmid/&rfr_iscdi=true |