Loading…

RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance

Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-06, Vol.13 (1), p.1-15, Article 3558
Main Authors: Mediati, Daniel G., Wong, Julia L., Gao, Wei, McKellar, Stuart, Pang, Chi Nam Ignatius, Wu, Sylvania, Wu, Winton, Sy, Brandon, Monk, Ian R., Biazik, Joanna M., Wilkins, Marc R., Howden, Benjamin P., Stinear, Timothy P., Granneman, Sander, Tree, Jai J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3
cites cdi_FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3
container_end_page 15
container_issue 1
container_start_page 1
container_title Nature communications
container_volume 13
creator Mediati, Daniel G.
Wong, Julia L.
Gao, Wei
McKellar, Stuart
Pang, Chi Nam Ignatius
Wu, Sylvania
Wu, Winton
Sy, Brandon
Monk, Ian R.
Biazik, Joanna M.
Wilkins, Marc R.
Howden, Benjamin P.
Stinear, Timothy P.
Granneman, Sander
Tree, Jai J.
description Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA–RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA–RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA–mRNA interactions are recovered and we find that an mRNA encoding a long 3′ untranslated region (UTR) (termed vigR 3′UTR) functions as a regulatory ‘hub’ within the RNA–RNA interaction network. We demonstrate that the vigR 3′UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA–mRNA base-pairing. Deletion of the vigR 3′UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3′UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated. Regulatory small RNA (sRNA) interact with mRNAs to regulate their stability, transcription, and translation via diverse mechanisms. Here, Mediati et al. apply RNase III-CLASH to multidrug-resistant Staphylococcus aureus to characterise the network of RNA–RNA interactions associated with RNase III and identify a regulatory mRNA 3′UTR, named vigR-3′UTR, involved in the regulation of genes relevant for vancomycin sensitivity.
doi_str_mv 10.1038/s41467-022-31177-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d679ff7794784a6c999945fa7bd9395e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d679ff7794784a6c999945fa7bd9395e</doaj_id><sourcerecordid>2679465956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3</originalsourceid><addsrcrecordid>eNp9ks1q3DAQx01paUKaF-hJ0LNbfViWdSksS9sYlhQ2yVlo5ZGjxbY2krywt7xB36WPlCeJmg1pc-lc5vs3DPyL4iPBnwlmzZdYkaoWJaa0ZIQIUTZvilOKK1ISQdnbf-KT4jzGLc7GJGmq6n1xwrhgtK75afFrfakjoLZty-VqcXWBvEXjPCRXdmHuUYDoYtJTQldJ724PgzfemDkiPQfILsAe9JDTHPXzoJMPBzSuLxeIPdz_vrle5_rd7AJ0yPqA3JQgjNA5nQDt9WT8eDBuejlj4EPxzmYgnD_7s-Lm-7fr5UW5-vmjXS5WpeEcp5JaQbRo6IYbS4zAgnJTARjLqBadxrkHYGltcYONxJoQazlhG9l0su5As7OiPXI7r7dqF9yow0F57dRTwYde6ZCcGUB1tZDWCiEr0VS6NjJbxa0Wm04yySGzvh5Zu3mTnzMwpaCHV9DXncndqt7vlaRENIRmwKdnQPB3M8Sktn4OU_5f0Xy8qrnkdZ6ixykTfIwB7MsFgtUfTaijJlTWhHrShGryEjsuxTw89RD-ov-z9Qi4P7vt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679465956</pqid></control><display><type>article</type><title>RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Mediati, Daniel G. ; Wong, Julia L. ; Gao, Wei ; McKellar, Stuart ; Pang, Chi Nam Ignatius ; Wu, Sylvania ; Wu, Winton ; Sy, Brandon ; Monk, Ian R. ; Biazik, Joanna M. ; Wilkins, Marc R. ; Howden, Benjamin P. ; Stinear, Timothy P. ; Granneman, Sander ; Tree, Jai J.</creator><creatorcontrib>Mediati, Daniel G. ; Wong, Julia L. ; Gao, Wei ; McKellar, Stuart ; Pang, Chi Nam Ignatius ; Wu, Sylvania ; Wu, Winton ; Sy, Brandon ; Monk, Ian R. ; Biazik, Joanna M. ; Wilkins, Marc R. ; Howden, Benjamin P. ; Stinear, Timothy P. ; Granneman, Sander ; Tree, Jai J.</creatorcontrib><description>Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA–RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA–RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA–mRNA interactions are recovered and we find that an mRNA encoding a long 3′ untranslated region (UTR) (termed vigR 3′UTR) functions as a regulatory ‘hub’ within the RNA–RNA interaction network. We demonstrate that the vigR 3′UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA–mRNA base-pairing. Deletion of the vigR 3′UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3′UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated. Regulatory small RNA (sRNA) interact with mRNAs to regulate their stability, transcription, and translation via diverse mechanisms. Here, Mediati et al. apply RNase III-CLASH to multidrug-resistant Staphylococcus aureus to characterise the network of RNA–RNA interactions associated with RNase III and identify a regulatory mRNA 3′UTR, named vigR-3′UTR, involved in the regulation of genes relevant for vancomycin sensitivity.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-31177-8</identifier><identifier>PMID: 35732665</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3' Untranslated regions ; 38 ; 38/90 ; 38/91 ; 631/208/200 ; 631/326/22/1434 ; 631/326/325/2482 ; Antibiotics ; Cell walls ; Drug resistance ; Gene deletion ; Gene expression ; Gene regulation ; Glycopeptides ; Humanities and Social Sciences ; Methicillin ; multidisciplinary ; Multidrug resistance ; Mutation ; Ribonuclease III ; Ribonucleic acid ; RNA ; Science ; Science (multidisciplinary) ; Sensitivity ; Staphylococcus aureus ; Staphylococcus infections ; Thickening ; Vancomycin</subject><ispartof>Nature communications, 2022-06, Vol.13 (1), p.1-15, Article 3558</ispartof><rights>The Author(s) 2022. corrected publication 2022</rights><rights>The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022, corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3</citedby><cites>FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3</cites><orcidid>0000-0003-0150-123X ; 0000-0002-0125-8279 ; 0000-0001-6982-8074 ; 0000-0003-0237-1473 ; 0000-0003-0792-9878 ; 0000-0002-5700-5684 ; 0000-0003-4387-1271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679465956/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679465956?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,44588,53789,53791,74896</link.rule.ids></links><search><creatorcontrib>Mediati, Daniel G.</creatorcontrib><creatorcontrib>Wong, Julia L.</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>McKellar, Stuart</creatorcontrib><creatorcontrib>Pang, Chi Nam Ignatius</creatorcontrib><creatorcontrib>Wu, Sylvania</creatorcontrib><creatorcontrib>Wu, Winton</creatorcontrib><creatorcontrib>Sy, Brandon</creatorcontrib><creatorcontrib>Monk, Ian R.</creatorcontrib><creatorcontrib>Biazik, Joanna M.</creatorcontrib><creatorcontrib>Wilkins, Marc R.</creatorcontrib><creatorcontrib>Howden, Benjamin P.</creatorcontrib><creatorcontrib>Stinear, Timothy P.</creatorcontrib><creatorcontrib>Granneman, Sander</creatorcontrib><creatorcontrib>Tree, Jai J.</creatorcontrib><title>RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA–RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA–RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA–mRNA interactions are recovered and we find that an mRNA encoding a long 3′ untranslated region (UTR) (termed vigR 3′UTR) functions as a regulatory ‘hub’ within the RNA–RNA interaction network. We demonstrate that the vigR 3′UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA–mRNA base-pairing. Deletion of the vigR 3′UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3′UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated. Regulatory small RNA (sRNA) interact with mRNAs to regulate their stability, transcription, and translation via diverse mechanisms. Here, Mediati et al. apply RNase III-CLASH to multidrug-resistant Staphylococcus aureus to characterise the network of RNA–RNA interactions associated with RNase III and identify a regulatory mRNA 3′UTR, named vigR-3′UTR, involved in the regulation of genes relevant for vancomycin sensitivity.</description><subject>3' Untranslated regions</subject><subject>38</subject><subject>38/90</subject><subject>38/91</subject><subject>631/208/200</subject><subject>631/326/22/1434</subject><subject>631/326/325/2482</subject><subject>Antibiotics</subject><subject>Cell walls</subject><subject>Drug resistance</subject><subject>Gene deletion</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Glycopeptides</subject><subject>Humanities and Social Sciences</subject><subject>Methicillin</subject><subject>multidisciplinary</subject><subject>Multidrug resistance</subject><subject>Mutation</subject><subject>Ribonuclease III</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensitivity</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus infections</subject><subject>Thickening</subject><subject>Vancomycin</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1q3DAQx01paUKaF-hJ0LNbfViWdSksS9sYlhQ2yVlo5ZGjxbY2krywt7xB36WPlCeJmg1pc-lc5vs3DPyL4iPBnwlmzZdYkaoWJaa0ZIQIUTZvilOKK1ISQdnbf-KT4jzGLc7GJGmq6n1xwrhgtK75afFrfakjoLZty-VqcXWBvEXjPCRXdmHuUYDoYtJTQldJ724PgzfemDkiPQfILsAe9JDTHPXzoJMPBzSuLxeIPdz_vrle5_rd7AJ0yPqA3JQgjNA5nQDt9WT8eDBuejlj4EPxzmYgnD_7s-Lm-7fr5UW5-vmjXS5WpeEcp5JaQbRo6IYbS4zAgnJTARjLqBadxrkHYGltcYONxJoQazlhG9l0su5As7OiPXI7r7dqF9yow0F57dRTwYde6ZCcGUB1tZDWCiEr0VS6NjJbxa0Wm04yySGzvh5Zu3mTnzMwpaCHV9DXncndqt7vlaRENIRmwKdnQPB3M8Sktn4OU_5f0Xy8qrnkdZ6ixykTfIwB7MsFgtUfTaijJlTWhHrShGryEjsuxTw89RD-ov-z9Qi4P7vt</recordid><startdate>20220622</startdate><enddate>20220622</enddate><creator>Mediati, Daniel G.</creator><creator>Wong, Julia L.</creator><creator>Gao, Wei</creator><creator>McKellar, Stuart</creator><creator>Pang, Chi Nam Ignatius</creator><creator>Wu, Sylvania</creator><creator>Wu, Winton</creator><creator>Sy, Brandon</creator><creator>Monk, Ian R.</creator><creator>Biazik, Joanna M.</creator><creator>Wilkins, Marc R.</creator><creator>Howden, Benjamin P.</creator><creator>Stinear, Timothy P.</creator><creator>Granneman, Sander</creator><creator>Tree, Jai J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0150-123X</orcidid><orcidid>https://orcid.org/0000-0002-0125-8279</orcidid><orcidid>https://orcid.org/0000-0001-6982-8074</orcidid><orcidid>https://orcid.org/0000-0003-0237-1473</orcidid><orcidid>https://orcid.org/0000-0003-0792-9878</orcidid><orcidid>https://orcid.org/0000-0002-5700-5684</orcidid><orcidid>https://orcid.org/0000-0003-4387-1271</orcidid></search><sort><creationdate>20220622</creationdate><title>RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance</title><author>Mediati, Daniel G. ; Wong, Julia L. ; Gao, Wei ; McKellar, Stuart ; Pang, Chi Nam Ignatius ; Wu, Sylvania ; Wu, Winton ; Sy, Brandon ; Monk, Ian R. ; Biazik, Joanna M. ; Wilkins, Marc R. ; Howden, Benjamin P. ; Stinear, Timothy P. ; Granneman, Sander ; Tree, Jai J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3' Untranslated regions</topic><topic>38</topic><topic>38/90</topic><topic>38/91</topic><topic>631/208/200</topic><topic>631/326/22/1434</topic><topic>631/326/325/2482</topic><topic>Antibiotics</topic><topic>Cell walls</topic><topic>Drug resistance</topic><topic>Gene deletion</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Glycopeptides</topic><topic>Humanities and Social Sciences</topic><topic>Methicillin</topic><topic>multidisciplinary</topic><topic>Multidrug resistance</topic><topic>Mutation</topic><topic>Ribonuclease III</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensitivity</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus infections</topic><topic>Thickening</topic><topic>Vancomycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mediati, Daniel G.</creatorcontrib><creatorcontrib>Wong, Julia L.</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>McKellar, Stuart</creatorcontrib><creatorcontrib>Pang, Chi Nam Ignatius</creatorcontrib><creatorcontrib>Wu, Sylvania</creatorcontrib><creatorcontrib>Wu, Winton</creatorcontrib><creatorcontrib>Sy, Brandon</creatorcontrib><creatorcontrib>Monk, Ian R.</creatorcontrib><creatorcontrib>Biazik, Joanna M.</creatorcontrib><creatorcontrib>Wilkins, Marc R.</creatorcontrib><creatorcontrib>Howden, Benjamin P.</creatorcontrib><creatorcontrib>Stinear, Timothy P.</creatorcontrib><creatorcontrib>Granneman, Sander</creatorcontrib><creatorcontrib>Tree, Jai J.</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mediati, Daniel G.</au><au>Wong, Julia L.</au><au>Gao, Wei</au><au>McKellar, Stuart</au><au>Pang, Chi Nam Ignatius</au><au>Wu, Sylvania</au><au>Wu, Winton</au><au>Sy, Brandon</au><au>Monk, Ian R.</au><au>Biazik, Joanna M.</au><au>Wilkins, Marc R.</au><au>Howden, Benjamin P.</au><au>Stinear, Timothy P.</au><au>Granneman, Sander</au><au>Tree, Jai J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2022-06-22</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>3558</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA–RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA–RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA–mRNA interactions are recovered and we find that an mRNA encoding a long 3′ untranslated region (UTR) (termed vigR 3′UTR) functions as a regulatory ‘hub’ within the RNA–RNA interaction network. We demonstrate that the vigR 3′UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA–mRNA base-pairing. Deletion of the vigR 3′UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3′UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated. Regulatory small RNA (sRNA) interact with mRNAs to regulate their stability, transcription, and translation via diverse mechanisms. Here, Mediati et al. apply RNase III-CLASH to multidrug-resistant Staphylococcus aureus to characterise the network of RNA–RNA interactions associated with RNase III and identify a regulatory mRNA 3′UTR, named vigR-3′UTR, involved in the regulation of genes relevant for vancomycin sensitivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35732665</pmid><doi>10.1038/s41467-022-31177-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0150-123X</orcidid><orcidid>https://orcid.org/0000-0002-0125-8279</orcidid><orcidid>https://orcid.org/0000-0001-6982-8074</orcidid><orcidid>https://orcid.org/0000-0003-0237-1473</orcidid><orcidid>https://orcid.org/0000-0003-0792-9878</orcidid><orcidid>https://orcid.org/0000-0002-5700-5684</orcidid><orcidid>https://orcid.org/0000-0003-4387-1271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-06, Vol.13 (1), p.1-15, Article 3558
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d679ff7794784a6c999945fa7bd9395e
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 3' Untranslated regions
38
38/90
38/91
631/208/200
631/326/22/1434
631/326/325/2482
Antibiotics
Cell walls
Drug resistance
Gene deletion
Gene expression
Gene regulation
Glycopeptides
Humanities and Social Sciences
Methicillin
multidisciplinary
Multidrug resistance
Mutation
Ribonuclease III
Ribonucleic acid
RNA
Science
Science (multidisciplinary)
Sensitivity
Staphylococcus aureus
Staphylococcus infections
Thickening
Vancomycin
title RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNase%20III-CLASH%20of%20multi-drug%20resistant%20Staphylococcus%20aureus%20reveals%20a%20regulatory%20mRNA%203%E2%80%B2UTR%20required%20for%20intermediate%20vancomycin%20resistance&rft.jtitle=Nature%20communications&rft.au=Mediati,%20Daniel%20G.&rft.date=2022-06-22&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=3558&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-31177-8&rft_dat=%3Cproquest_doaj_%3E2679465956%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679465956&rft_id=info:pmid/35732665&rfr_iscdi=true