Loading…
RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance
Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that...
Saved in:
Published in: | Nature communications 2022-06, Vol.13 (1), p.1-15, Article 3558 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 1 |
container_title | Nature communications |
container_volume | 13 |
creator | Mediati, Daniel G. Wong, Julia L. Gao, Wei McKellar, Stuart Pang, Chi Nam Ignatius Wu, Sylvania Wu, Winton Sy, Brandon Monk, Ian R. Biazik, Joanna M. Wilkins, Marc R. Howden, Benjamin P. Stinear, Timothy P. Granneman, Sander Tree, Jai J. |
description | Treatment of methicillin-resistant
Staphylococcus aureus
infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA–RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA–RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA–mRNA interactions are recovered and we find that an mRNA encoding a long 3′ untranslated region (UTR) (termed
vigR
3′UTR) functions as a regulatory ‘hub’ within the RNA–RNA interaction network. We demonstrate that the
vigR
3′UTR promotes expression of
folD
and the cell wall lytic transglycosylase
isaA
through direct mRNA–mRNA base-pairing. Deletion of the
vigR
3′UTR re-sensitised VISA to glycopeptide treatment and both
isaA
and
vigR
3′UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that
S. aureus
uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.
Regulatory small RNA (sRNA) interact with mRNAs to regulate their stability, transcription, and translation via diverse mechanisms. Here, Mediati et al. apply RNase III-CLASH to multidrug-resistant Staphylococcus aureus to characterise the network of RNA–RNA interactions associated with RNase III and identify a regulatory mRNA 3′UTR, named vigR-3′UTR, involved in the regulation of genes relevant for vancomycin sensitivity. |
doi_str_mv | 10.1038/s41467-022-31177-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d679ff7794784a6c999945fa7bd9395e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d679ff7794784a6c999945fa7bd9395e</doaj_id><sourcerecordid>2679465956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3</originalsourceid><addsrcrecordid>eNp9ks1q3DAQx01paUKaF-hJ0LNbfViWdSksS9sYlhQ2yVlo5ZGjxbY2krywt7xB36WPlCeJmg1pc-lc5vs3DPyL4iPBnwlmzZdYkaoWJaa0ZIQIUTZvilOKK1ISQdnbf-KT4jzGLc7GJGmq6n1xwrhgtK75afFrfakjoLZty-VqcXWBvEXjPCRXdmHuUYDoYtJTQldJ724PgzfemDkiPQfILsAe9JDTHPXzoJMPBzSuLxeIPdz_vrle5_rd7AJ0yPqA3JQgjNA5nQDt9WT8eDBuejlj4EPxzmYgnD_7s-Lm-7fr5UW5-vmjXS5WpeEcp5JaQbRo6IYbS4zAgnJTARjLqBadxrkHYGltcYONxJoQazlhG9l0su5As7OiPXI7r7dqF9yow0F57dRTwYde6ZCcGUB1tZDWCiEr0VS6NjJbxa0Wm04yySGzvh5Zu3mTnzMwpaCHV9DXncndqt7vlaRENIRmwKdnQPB3M8Sktn4OU_5f0Xy8qrnkdZ6ixykTfIwB7MsFgtUfTaijJlTWhHrShGryEjsuxTw89RD-ov-z9Qi4P7vt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679465956</pqid></control><display><type>article</type><title>RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Mediati, Daniel G. ; Wong, Julia L. ; Gao, Wei ; McKellar, Stuart ; Pang, Chi Nam Ignatius ; Wu, Sylvania ; Wu, Winton ; Sy, Brandon ; Monk, Ian R. ; Biazik, Joanna M. ; Wilkins, Marc R. ; Howden, Benjamin P. ; Stinear, Timothy P. ; Granneman, Sander ; Tree, Jai J.</creator><creatorcontrib>Mediati, Daniel G. ; Wong, Julia L. ; Gao, Wei ; McKellar, Stuart ; Pang, Chi Nam Ignatius ; Wu, Sylvania ; Wu, Winton ; Sy, Brandon ; Monk, Ian R. ; Biazik, Joanna M. ; Wilkins, Marc R. ; Howden, Benjamin P. ; Stinear, Timothy P. ; Granneman, Sander ; Tree, Jai J.</creatorcontrib><description>Treatment of methicillin-resistant
Staphylococcus aureus
infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA–RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA–RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA–mRNA interactions are recovered and we find that an mRNA encoding a long 3′ untranslated region (UTR) (termed
vigR
3′UTR) functions as a regulatory ‘hub’ within the RNA–RNA interaction network. We demonstrate that the
vigR
3′UTR promotes expression of
folD
and the cell wall lytic transglycosylase
isaA
through direct mRNA–mRNA base-pairing. Deletion of the
vigR
3′UTR re-sensitised VISA to glycopeptide treatment and both
isaA
and
vigR
3′UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that
S. aureus
uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.
Regulatory small RNA (sRNA) interact with mRNAs to regulate their stability, transcription, and translation via diverse mechanisms. Here, Mediati et al. apply RNase III-CLASH to multidrug-resistant Staphylococcus aureus to characterise the network of RNA–RNA interactions associated with RNase III and identify a regulatory mRNA 3′UTR, named vigR-3′UTR, involved in the regulation of genes relevant for vancomycin sensitivity.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-31177-8</identifier><identifier>PMID: 35732665</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3' Untranslated regions ; 38 ; 38/90 ; 38/91 ; 631/208/200 ; 631/326/22/1434 ; 631/326/325/2482 ; Antibiotics ; Cell walls ; Drug resistance ; Gene deletion ; Gene expression ; Gene regulation ; Glycopeptides ; Humanities and Social Sciences ; Methicillin ; multidisciplinary ; Multidrug resistance ; Mutation ; Ribonuclease III ; Ribonucleic acid ; RNA ; Science ; Science (multidisciplinary) ; Sensitivity ; Staphylococcus aureus ; Staphylococcus infections ; Thickening ; Vancomycin</subject><ispartof>Nature communications, 2022-06, Vol.13 (1), p.1-15, Article 3558</ispartof><rights>The Author(s) 2022. corrected publication 2022</rights><rights>The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022, corrected publication 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3</citedby><cites>FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3</cites><orcidid>0000-0003-0150-123X ; 0000-0002-0125-8279 ; 0000-0001-6982-8074 ; 0000-0003-0237-1473 ; 0000-0003-0792-9878 ; 0000-0002-5700-5684 ; 0000-0003-4387-1271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679465956/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679465956?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,44588,53789,53791,74896</link.rule.ids></links><search><creatorcontrib>Mediati, Daniel G.</creatorcontrib><creatorcontrib>Wong, Julia L.</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>McKellar, Stuart</creatorcontrib><creatorcontrib>Pang, Chi Nam Ignatius</creatorcontrib><creatorcontrib>Wu, Sylvania</creatorcontrib><creatorcontrib>Wu, Winton</creatorcontrib><creatorcontrib>Sy, Brandon</creatorcontrib><creatorcontrib>Monk, Ian R.</creatorcontrib><creatorcontrib>Biazik, Joanna M.</creatorcontrib><creatorcontrib>Wilkins, Marc R.</creatorcontrib><creatorcontrib>Howden, Benjamin P.</creatorcontrib><creatorcontrib>Stinear, Timothy P.</creatorcontrib><creatorcontrib>Granneman, Sander</creatorcontrib><creatorcontrib>Tree, Jai J.</creatorcontrib><title>RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Treatment of methicillin-resistant
Staphylococcus aureus
infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA–RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA–RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA–mRNA interactions are recovered and we find that an mRNA encoding a long 3′ untranslated region (UTR) (termed
vigR
3′UTR) functions as a regulatory ‘hub’ within the RNA–RNA interaction network. We demonstrate that the
vigR
3′UTR promotes expression of
folD
and the cell wall lytic transglycosylase
isaA
through direct mRNA–mRNA base-pairing. Deletion of the
vigR
3′UTR re-sensitised VISA to glycopeptide treatment and both
isaA
and
vigR
3′UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that
S. aureus
uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.
Regulatory small RNA (sRNA) interact with mRNAs to regulate their stability, transcription, and translation via diverse mechanisms. Here, Mediati et al. apply RNase III-CLASH to multidrug-resistant Staphylococcus aureus to characterise the network of RNA–RNA interactions associated with RNase III and identify a regulatory mRNA 3′UTR, named vigR-3′UTR, involved in the regulation of genes relevant for vancomycin sensitivity.</description><subject>3' Untranslated regions</subject><subject>38</subject><subject>38/90</subject><subject>38/91</subject><subject>631/208/200</subject><subject>631/326/22/1434</subject><subject>631/326/325/2482</subject><subject>Antibiotics</subject><subject>Cell walls</subject><subject>Drug resistance</subject><subject>Gene deletion</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Glycopeptides</subject><subject>Humanities and Social Sciences</subject><subject>Methicillin</subject><subject>multidisciplinary</subject><subject>Multidrug resistance</subject><subject>Mutation</subject><subject>Ribonuclease III</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensitivity</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus infections</subject><subject>Thickening</subject><subject>Vancomycin</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1q3DAQx01paUKaF-hJ0LNbfViWdSksS9sYlhQ2yVlo5ZGjxbY2krywt7xB36WPlCeJmg1pc-lc5vs3DPyL4iPBnwlmzZdYkaoWJaa0ZIQIUTZvilOKK1ISQdnbf-KT4jzGLc7GJGmq6n1xwrhgtK75afFrfakjoLZty-VqcXWBvEXjPCRXdmHuUYDoYtJTQldJ724PgzfemDkiPQfILsAe9JDTHPXzoJMPBzSuLxeIPdz_vrle5_rd7AJ0yPqA3JQgjNA5nQDt9WT8eDBuejlj4EPxzmYgnD_7s-Lm-7fr5UW5-vmjXS5WpeEcp5JaQbRo6IYbS4zAgnJTARjLqBadxrkHYGltcYONxJoQazlhG9l0su5As7OiPXI7r7dqF9yow0F57dRTwYde6ZCcGUB1tZDWCiEr0VS6NjJbxa0Wm04yySGzvh5Zu3mTnzMwpaCHV9DXncndqt7vlaRENIRmwKdnQPB3M8Sktn4OU_5f0Xy8qrnkdZ6ixykTfIwB7MsFgtUfTaijJlTWhHrShGryEjsuxTw89RD-ov-z9Qi4P7vt</recordid><startdate>20220622</startdate><enddate>20220622</enddate><creator>Mediati, Daniel G.</creator><creator>Wong, Julia L.</creator><creator>Gao, Wei</creator><creator>McKellar, Stuart</creator><creator>Pang, Chi Nam Ignatius</creator><creator>Wu, Sylvania</creator><creator>Wu, Winton</creator><creator>Sy, Brandon</creator><creator>Monk, Ian R.</creator><creator>Biazik, Joanna M.</creator><creator>Wilkins, Marc R.</creator><creator>Howden, Benjamin P.</creator><creator>Stinear, Timothy P.</creator><creator>Granneman, Sander</creator><creator>Tree, Jai J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0150-123X</orcidid><orcidid>https://orcid.org/0000-0002-0125-8279</orcidid><orcidid>https://orcid.org/0000-0001-6982-8074</orcidid><orcidid>https://orcid.org/0000-0003-0237-1473</orcidid><orcidid>https://orcid.org/0000-0003-0792-9878</orcidid><orcidid>https://orcid.org/0000-0002-5700-5684</orcidid><orcidid>https://orcid.org/0000-0003-4387-1271</orcidid></search><sort><creationdate>20220622</creationdate><title>RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance</title><author>Mediati, Daniel G. ; Wong, Julia L. ; Gao, Wei ; McKellar, Stuart ; Pang, Chi Nam Ignatius ; Wu, Sylvania ; Wu, Winton ; Sy, Brandon ; Monk, Ian R. ; Biazik, Joanna M. ; Wilkins, Marc R. ; Howden, Benjamin P. ; Stinear, Timothy P. ; Granneman, Sander ; Tree, Jai J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3' Untranslated regions</topic><topic>38</topic><topic>38/90</topic><topic>38/91</topic><topic>631/208/200</topic><topic>631/326/22/1434</topic><topic>631/326/325/2482</topic><topic>Antibiotics</topic><topic>Cell walls</topic><topic>Drug resistance</topic><topic>Gene deletion</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Glycopeptides</topic><topic>Humanities and Social Sciences</topic><topic>Methicillin</topic><topic>multidisciplinary</topic><topic>Multidrug resistance</topic><topic>Mutation</topic><topic>Ribonuclease III</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensitivity</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus infections</topic><topic>Thickening</topic><topic>Vancomycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mediati, Daniel G.</creatorcontrib><creatorcontrib>Wong, Julia L.</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>McKellar, Stuart</creatorcontrib><creatorcontrib>Pang, Chi Nam Ignatius</creatorcontrib><creatorcontrib>Wu, Sylvania</creatorcontrib><creatorcontrib>Wu, Winton</creatorcontrib><creatorcontrib>Sy, Brandon</creatorcontrib><creatorcontrib>Monk, Ian R.</creatorcontrib><creatorcontrib>Biazik, Joanna M.</creatorcontrib><creatorcontrib>Wilkins, Marc R.</creatorcontrib><creatorcontrib>Howden, Benjamin P.</creatorcontrib><creatorcontrib>Stinear, Timothy P.</creatorcontrib><creatorcontrib>Granneman, Sander</creatorcontrib><creatorcontrib>Tree, Jai J.</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mediati, Daniel G.</au><au>Wong, Julia L.</au><au>Gao, Wei</au><au>McKellar, Stuart</au><au>Pang, Chi Nam Ignatius</au><au>Wu, Sylvania</au><au>Wu, Winton</au><au>Sy, Brandon</au><au>Monk, Ian R.</au><au>Biazik, Joanna M.</au><au>Wilkins, Marc R.</au><au>Howden, Benjamin P.</au><au>Stinear, Timothy P.</au><au>Granneman, Sander</au><au>Tree, Jai J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2022-06-22</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>3558</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Treatment of methicillin-resistant
Staphylococcus aureus
infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA–RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA–RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA–mRNA interactions are recovered and we find that an mRNA encoding a long 3′ untranslated region (UTR) (termed
vigR
3′UTR) functions as a regulatory ‘hub’ within the RNA–RNA interaction network. We demonstrate that the
vigR
3′UTR promotes expression of
folD
and the cell wall lytic transglycosylase
isaA
through direct mRNA–mRNA base-pairing. Deletion of the
vigR
3′UTR re-sensitised VISA to glycopeptide treatment and both
isaA
and
vigR
3′UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that
S. aureus
uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.
Regulatory small RNA (sRNA) interact with mRNAs to regulate their stability, transcription, and translation via diverse mechanisms. Here, Mediati et al. apply RNase III-CLASH to multidrug-resistant Staphylococcus aureus to characterise the network of RNA–RNA interactions associated with RNase III and identify a regulatory mRNA 3′UTR, named vigR-3′UTR, involved in the regulation of genes relevant for vancomycin sensitivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35732665</pmid><doi>10.1038/s41467-022-31177-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0150-123X</orcidid><orcidid>https://orcid.org/0000-0002-0125-8279</orcidid><orcidid>https://orcid.org/0000-0001-6982-8074</orcidid><orcidid>https://orcid.org/0000-0003-0237-1473</orcidid><orcidid>https://orcid.org/0000-0003-0792-9878</orcidid><orcidid>https://orcid.org/0000-0002-5700-5684</orcidid><orcidid>https://orcid.org/0000-0003-4387-1271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-06, Vol.13 (1), p.1-15, Article 3558 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d679ff7794784a6c999945fa7bd9395e |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 3' Untranslated regions 38 38/90 38/91 631/208/200 631/326/22/1434 631/326/325/2482 Antibiotics Cell walls Drug resistance Gene deletion Gene expression Gene regulation Glycopeptides Humanities and Social Sciences Methicillin multidisciplinary Multidrug resistance Mutation Ribonuclease III Ribonucleic acid RNA Science Science (multidisciplinary) Sensitivity Staphylococcus aureus Staphylococcus infections Thickening Vancomycin |
title | RNase III-CLASH of multi-drug resistant Staphylococcus aureus reveals a regulatory mRNA 3′UTR required for intermediate vancomycin resistance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNase%20III-CLASH%20of%20multi-drug%20resistant%20Staphylococcus%20aureus%20reveals%20a%20regulatory%20mRNA%203%E2%80%B2UTR%20required%20for%20intermediate%20vancomycin%20resistance&rft.jtitle=Nature%20communications&rft.au=Mediati,%20Daniel%20G.&rft.date=2022-06-22&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=3558&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-31177-8&rft_dat=%3Cproquest_doaj_%3E2679465956%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-2f71a782b5cf1c70725c4eecf32a7da0a78eef26f080c90a11ff513b98d96dea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679465956&rft_id=info:pmid/35732665&rfr_iscdi=true |