Loading…
MEMS GC Column Performance for Analyzing Organics and Biological Molecules for Future Landed Planetary Missions
We present a novel, innovative approach to gas chromatography-mass spectrometry (GC-MS) based on micro-electro-mechanical systems (MEMS) columns that improve the current, state-of-the-art by dramatically reducing the size, mass, and power resources for deploying GC for future landed missions. The ou...
Saved in:
Published in: | Frontiers in astronomy and space sciences 2022-02, Vol.9 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a novel, innovative approach to gas chromatography-mass spectrometry (GC-MS) based on micro-electro-mechanical systems (MEMS) columns that improve the current, state-of-the-art by dramatically reducing the size, mass, and power resources for deploying GC for future landed missions. The outlet of the MEMS GC column was coupled to a prototype of the MAss Spectrometer for Planetary EXploration (MASPEX) through a heated transfer line into the ion source. MEMS GC-MS experiments were performed to demonstrate linearity of response and establish limit of detection (LOD) to alkanes (organics), fatty acid methyl esters (FAMEs) and chemically derivatized amino acids (biological molecules). Linearity of response to each chemical family was demonstrated over two orders of magnitude dynamic range and limit of detection (LOD) values were single to tens (4–43) of picomoles per 1 μl injection volume. MEMS GC column analytical performance was also demonstrated for a “Mega Mix” of chemical analytes including organics and biological molecules. Chromatographic resolution exceeded 200, retention time reproducibility was |
---|---|
ISSN: | 2296-987X 2296-987X |
DOI: | 10.3389/fspas.2022.828103 |