Loading…
Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means
Volumetric errors (VE) are related to the machine tool accuracy state. Extracting features from the complex VE data provides with a means to characterize this data. VE feature classification can reveal the machine tool accuracy states. This paper presents a study on how to use principal component an...
Saved in:
Published in: | Journal of Manufacturing and Materials Processing 2018-09, Vol.2 (3), p.60 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323 |
container_end_page | |
container_issue | 3 |
container_start_page | 60 |
container_title | Journal of Manufacturing and Materials Processing |
container_volume | 2 |
creator | Xing, Kanglin Mayer, J.R.R. Achiche, Sofiane |
description | Volumetric errors (VE) are related to the machine tool accuracy state. Extracting features from the complex VE data provides with a means to characterize this data. VE feature classification can reveal the machine tool accuracy states. This paper presents a study on how to use principal component analysis (PCA) to extract the features of VE and how to use the K-means method for machine tool accuracy state classification. The proposed data processing methods have been tested with the VE data acquired from a five-axis machine tool with different states of malfunction. The results indicate that the PCA and K-means are capable of extracting the VE feature information and classifying the fault states including the C axis encoder fault, uncalibrated C axis encoder fault, and pallet location fault from the machine tool normal states. This research provides a new way for VE features extraction and classification. |
doi_str_mv | 10.3390/jmmp2030060 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d682ac20c89948ee92c595a65ed19395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d682ac20c89948ee92c595a65ed19395</doaj_id><sourcerecordid>2121720057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323</originalsourceid><addsrcrecordid>eNpNkU1v2zAMhoWhA1ZkPfUPCOixcEd92daxCNIPrMV2aHsVGJluFdiSKzlA8--XJcPQE4mX5EOQL2PnAq6UsvBjM46TBAVQwxd2Kg3oSmurTz7l39hZKRsAkK1plFWnrDyifwuR-FNKA39Jw3akOQfPVzmnzG8I522mwlcfc0Y_hxQ5xo4vBywl9MHjQXouIb7y3zlEHyYc-DKNU4oUZ34dcdiVUA5TP6tHwli-s689DoXO_sUFe75ZPS3vqodft_fL64fKq1rPlRCtbr30kgixWffedo02CCQl6nYtgFqloQGiWuK6N8Ibrxv01It-X5Jqwe6P3C7hxk05jJh3LmFwByHlV4d5Dn4g19WtRC_Bt9bqlshKb6zB2lAnrLJmz7o4sqac3rdUZrdJ27w_rjgppGgkwP6jC3Z57PI5lZKp_79VgPtrkvtkkvoDBYuFig</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121720057</pqid></control><display><type>article</type><title>Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means</title><source>ABI/INFORM global</source><source>Publicly Available Content (ProQuest)</source><creator>Xing, Kanglin ; Mayer, J.R.R. ; Achiche, Sofiane</creator><creatorcontrib>Xing, Kanglin ; Mayer, J.R.R. ; Achiche, Sofiane</creatorcontrib><description>Volumetric errors (VE) are related to the machine tool accuracy state. Extracting features from the complex VE data provides with a means to characterize this data. VE feature classification can reveal the machine tool accuracy states. This paper presents a study on how to use principal component analysis (PCA) to extract the features of VE and how to use the K-means method for machine tool accuracy state classification. The proposed data processing methods have been tested with the VE data acquired from a five-axis machine tool with different states of malfunction. The results indicate that the PCA and K-means are capable of extracting the VE feature information and classifying the fault states including the C axis encoder fault, uncalibrated C axis encoder fault, and pallet location fault from the machine tool normal states. This research provides a new way for VE features extraction and classification.</description><identifier>ISSN: 2504-4494</identifier><identifier>EISSN: 2504-4494</identifier><identifier>DOI: 10.3390/jmmp2030060</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Classification ; Clustering ; Data acquisition ; Data processing ; Failure ; Fault diagnosis ; feature classification ; Feature extraction ; Five axis ; K-means ; Kinematics ; Machine tools ; Maintenance management ; Manufacturing ; Mechanical engineering ; Methods ; Monitoring systems ; Neural networks ; Pattern recognition ; principal component analysis ; Principal components analysis ; Signal processing ; volumetric errors</subject><ispartof>Journal of Manufacturing and Materials Processing, 2018-09, Vol.2 (3), p.60</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323</citedby><cites>FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323</cites><orcidid>0000-0002-7730-0701 ; 0000-0001-8095-9665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2121720057/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2121720057?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11666,25730,27900,27901,36036,36988,44338,44565,74864,75095</link.rule.ids></links><search><creatorcontrib>Xing, Kanglin</creatorcontrib><creatorcontrib>Mayer, J.R.R.</creatorcontrib><creatorcontrib>Achiche, Sofiane</creatorcontrib><title>Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means</title><title>Journal of Manufacturing and Materials Processing</title><description>Volumetric errors (VE) are related to the machine tool accuracy state. Extracting features from the complex VE data provides with a means to characterize this data. VE feature classification can reveal the machine tool accuracy states. This paper presents a study on how to use principal component analysis (PCA) to extract the features of VE and how to use the K-means method for machine tool accuracy state classification. The proposed data processing methods have been tested with the VE data acquired from a five-axis machine tool with different states of malfunction. The results indicate that the PCA and K-means are capable of extracting the VE feature information and classifying the fault states including the C axis encoder fault, uncalibrated C axis encoder fault, and pallet location fault from the machine tool normal states. This research provides a new way for VE features extraction and classification.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Clustering</subject><subject>Data acquisition</subject><subject>Data processing</subject><subject>Failure</subject><subject>Fault diagnosis</subject><subject>feature classification</subject><subject>Feature extraction</subject><subject>Five axis</subject><subject>K-means</subject><subject>Kinematics</subject><subject>Machine tools</subject><subject>Maintenance management</subject><subject>Manufacturing</subject><subject>Mechanical engineering</subject><subject>Methods</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>principal component analysis</subject><subject>Principal components analysis</subject><subject>Signal processing</subject><subject>volumetric errors</subject><issn>2504-4494</issn><issn>2504-4494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1v2zAMhoWhA1ZkPfUPCOixcEd92daxCNIPrMV2aHsVGJluFdiSKzlA8--XJcPQE4mX5EOQL2PnAq6UsvBjM46TBAVQwxd2Kg3oSmurTz7l39hZKRsAkK1plFWnrDyifwuR-FNKA39Jw3akOQfPVzmnzG8I522mwlcfc0Y_hxQ5xo4vBywl9MHjQXouIb7y3zlEHyYc-DKNU4oUZ34dcdiVUA5TP6tHwli-s689DoXO_sUFe75ZPS3vqodft_fL64fKq1rPlRCtbr30kgixWffedo02CCQl6nYtgFqloQGiWuK6N8Ibrxv01It-X5Jqwe6P3C7hxk05jJh3LmFwByHlV4d5Dn4g19WtRC_Bt9bqlshKb6zB2lAnrLJmz7o4sqac3rdUZrdJ27w_rjgppGgkwP6jC3Z57PI5lZKp_79VgPtrkvtkkvoDBYuFig</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Xing, Kanglin</creator><creator>Mayer, J.R.R.</creator><creator>Achiche, Sofiane</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7730-0701</orcidid><orcidid>https://orcid.org/0000-0001-8095-9665</orcidid></search><sort><creationdate>20180901</creationdate><title>Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means</title><author>Xing, Kanglin ; Mayer, J.R.R. ; Achiche, Sofiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Clustering</topic><topic>Data acquisition</topic><topic>Data processing</topic><topic>Failure</topic><topic>Fault diagnosis</topic><topic>feature classification</topic><topic>Feature extraction</topic><topic>Five axis</topic><topic>K-means</topic><topic>Kinematics</topic><topic>Machine tools</topic><topic>Maintenance management</topic><topic>Manufacturing</topic><topic>Mechanical engineering</topic><topic>Methods</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>principal component analysis</topic><topic>Principal components analysis</topic><topic>Signal processing</topic><topic>volumetric errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Kanglin</creatorcontrib><creatorcontrib>Mayer, J.R.R.</creatorcontrib><creatorcontrib>Achiche, Sofiane</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM global</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Manufacturing and Materials Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Kanglin</au><au>Mayer, J.R.R.</au><au>Achiche, Sofiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means</atitle><jtitle>Journal of Manufacturing and Materials Processing</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>2</volume><issue>3</issue><spage>60</spage><pages>60-</pages><issn>2504-4494</issn><eissn>2504-4494</eissn><abstract>Volumetric errors (VE) are related to the machine tool accuracy state. Extracting features from the complex VE data provides with a means to characterize this data. VE feature classification can reveal the machine tool accuracy states. This paper presents a study on how to use principal component analysis (PCA) to extract the features of VE and how to use the K-means method for machine tool accuracy state classification. The proposed data processing methods have been tested with the VE data acquired from a five-axis machine tool with different states of malfunction. The results indicate that the PCA and K-means are capable of extracting the VE feature information and classifying the fault states including the C axis encoder fault, uncalibrated C axis encoder fault, and pallet location fault from the machine tool normal states. This research provides a new way for VE features extraction and classification.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmmp2030060</doi><orcidid>https://orcid.org/0000-0002-7730-0701</orcidid><orcidid>https://orcid.org/0000-0001-8095-9665</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-4494 |
ispartof | Journal of Manufacturing and Materials Processing, 2018-09, Vol.2 (3), p.60 |
issn | 2504-4494 2504-4494 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d682ac20c89948ee92c595a65ed19395 |
source | ABI/INFORM global; Publicly Available Content (ProQuest) |
subjects | Accuracy Classification Clustering Data acquisition Data processing Failure Fault diagnosis feature classification Feature extraction Five axis K-means Kinematics Machine tools Maintenance management Manufacturing Mechanical engineering Methods Monitoring systems Neural networks Pattern recognition principal component analysis Principal components analysis Signal processing volumetric errors |
title | Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T15%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Tool%20Volumetric%20Error%20Features%20Extraction%20and%20Classification%20Using%20Principal%20Component%20Analysis%20and%20K-Means&rft.jtitle=Journal%20of%20Manufacturing%20and%20Materials%20Processing&rft.au=Xing,%20Kanglin&rft.date=2018-09-01&rft.volume=2&rft.issue=3&rft.spage=60&rft.pages=60-&rft.issn=2504-4494&rft.eissn=2504-4494&rft_id=info:doi/10.3390/jmmp2030060&rft_dat=%3Cproquest_doaj_%3E2121720057%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121720057&rft_id=info:pmid/&rfr_iscdi=true |