Loading…

Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means

Volumetric errors (VE) are related to the machine tool accuracy state. Extracting features from the complex VE data provides with a means to characterize this data. VE feature classification can reveal the machine tool accuracy states. This paper presents a study on how to use principal component an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Manufacturing and Materials Processing 2018-09, Vol.2 (3), p.60
Main Authors: Xing, Kanglin, Mayer, J.R.R., Achiche, Sofiane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323
cites cdi_FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323
container_end_page
container_issue 3
container_start_page 60
container_title Journal of Manufacturing and Materials Processing
container_volume 2
creator Xing, Kanglin
Mayer, J.R.R.
Achiche, Sofiane
description Volumetric errors (VE) are related to the machine tool accuracy state. Extracting features from the complex VE data provides with a means to characterize this data. VE feature classification can reveal the machine tool accuracy states. This paper presents a study on how to use principal component analysis (PCA) to extract the features of VE and how to use the K-means method for machine tool accuracy state classification. The proposed data processing methods have been tested with the VE data acquired from a five-axis machine tool with different states of malfunction. The results indicate that the PCA and K-means are capable of extracting the VE feature information and classifying the fault states including the C axis encoder fault, uncalibrated C axis encoder fault, and pallet location fault from the machine tool normal states. This research provides a new way for VE features extraction and classification.
doi_str_mv 10.3390/jmmp2030060
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d682ac20c89948ee92c595a65ed19395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d682ac20c89948ee92c595a65ed19395</doaj_id><sourcerecordid>2121720057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323</originalsourceid><addsrcrecordid>eNpNkU1v2zAMhoWhA1ZkPfUPCOixcEd92daxCNIPrMV2aHsVGJluFdiSKzlA8--XJcPQE4mX5EOQL2PnAq6UsvBjM46TBAVQwxd2Kg3oSmurTz7l39hZKRsAkK1plFWnrDyifwuR-FNKA39Jw3akOQfPVzmnzG8I522mwlcfc0Y_hxQ5xo4vBywl9MHjQXouIb7y3zlEHyYc-DKNU4oUZ34dcdiVUA5TP6tHwli-s689DoXO_sUFe75ZPS3vqodft_fL64fKq1rPlRCtbr30kgixWffedo02CCQl6nYtgFqloQGiWuK6N8Ibrxv01It-X5Jqwe6P3C7hxk05jJh3LmFwByHlV4d5Dn4g19WtRC_Bt9bqlshKb6zB2lAnrLJmz7o4sqac3rdUZrdJ27w_rjgppGgkwP6jC3Z57PI5lZKp_79VgPtrkvtkkvoDBYuFig</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121720057</pqid></control><display><type>article</type><title>Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means</title><source>ABI/INFORM global</source><source>Publicly Available Content (ProQuest)</source><creator>Xing, Kanglin ; Mayer, J.R.R. ; Achiche, Sofiane</creator><creatorcontrib>Xing, Kanglin ; Mayer, J.R.R. ; Achiche, Sofiane</creatorcontrib><description>Volumetric errors (VE) are related to the machine tool accuracy state. Extracting features from the complex VE data provides with a means to characterize this data. VE feature classification can reveal the machine tool accuracy states. This paper presents a study on how to use principal component analysis (PCA) to extract the features of VE and how to use the K-means method for machine tool accuracy state classification. The proposed data processing methods have been tested with the VE data acquired from a five-axis machine tool with different states of malfunction. The results indicate that the PCA and K-means are capable of extracting the VE feature information and classifying the fault states including the C axis encoder fault, uncalibrated C axis encoder fault, and pallet location fault from the machine tool normal states. This research provides a new way for VE features extraction and classification.</description><identifier>ISSN: 2504-4494</identifier><identifier>EISSN: 2504-4494</identifier><identifier>DOI: 10.3390/jmmp2030060</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Classification ; Clustering ; Data acquisition ; Data processing ; Failure ; Fault diagnosis ; feature classification ; Feature extraction ; Five axis ; K-means ; Kinematics ; Machine tools ; Maintenance management ; Manufacturing ; Mechanical engineering ; Methods ; Monitoring systems ; Neural networks ; Pattern recognition ; principal component analysis ; Principal components analysis ; Signal processing ; volumetric errors</subject><ispartof>Journal of Manufacturing and Materials Processing, 2018-09, Vol.2 (3), p.60</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323</citedby><cites>FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323</cites><orcidid>0000-0002-7730-0701 ; 0000-0001-8095-9665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2121720057/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2121720057?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11666,25730,27900,27901,36036,36988,44338,44565,74864,75095</link.rule.ids></links><search><creatorcontrib>Xing, Kanglin</creatorcontrib><creatorcontrib>Mayer, J.R.R.</creatorcontrib><creatorcontrib>Achiche, Sofiane</creatorcontrib><title>Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means</title><title>Journal of Manufacturing and Materials Processing</title><description>Volumetric errors (VE) are related to the machine tool accuracy state. Extracting features from the complex VE data provides with a means to characterize this data. VE feature classification can reveal the machine tool accuracy states. This paper presents a study on how to use principal component analysis (PCA) to extract the features of VE and how to use the K-means method for machine tool accuracy state classification. The proposed data processing methods have been tested with the VE data acquired from a five-axis machine tool with different states of malfunction. The results indicate that the PCA and K-means are capable of extracting the VE feature information and classifying the fault states including the C axis encoder fault, uncalibrated C axis encoder fault, and pallet location fault from the machine tool normal states. This research provides a new way for VE features extraction and classification.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Clustering</subject><subject>Data acquisition</subject><subject>Data processing</subject><subject>Failure</subject><subject>Fault diagnosis</subject><subject>feature classification</subject><subject>Feature extraction</subject><subject>Five axis</subject><subject>K-means</subject><subject>Kinematics</subject><subject>Machine tools</subject><subject>Maintenance management</subject><subject>Manufacturing</subject><subject>Mechanical engineering</subject><subject>Methods</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>principal component analysis</subject><subject>Principal components analysis</subject><subject>Signal processing</subject><subject>volumetric errors</subject><issn>2504-4494</issn><issn>2504-4494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1v2zAMhoWhA1ZkPfUPCOixcEd92daxCNIPrMV2aHsVGJluFdiSKzlA8--XJcPQE4mX5EOQL2PnAq6UsvBjM46TBAVQwxd2Kg3oSmurTz7l39hZKRsAkK1plFWnrDyifwuR-FNKA39Jw3akOQfPVzmnzG8I522mwlcfc0Y_hxQ5xo4vBywl9MHjQXouIb7y3zlEHyYc-DKNU4oUZ34dcdiVUA5TP6tHwli-s689DoXO_sUFe75ZPS3vqodft_fL64fKq1rPlRCtbr30kgixWffedo02CCQl6nYtgFqloQGiWuK6N8Ibrxv01It-X5Jqwe6P3C7hxk05jJh3LmFwByHlV4d5Dn4g19WtRC_Bt9bqlshKb6zB2lAnrLJmz7o4sqac3rdUZrdJ27w_rjgppGgkwP6jC3Z57PI5lZKp_79VgPtrkvtkkvoDBYuFig</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Xing, Kanglin</creator><creator>Mayer, J.R.R.</creator><creator>Achiche, Sofiane</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7730-0701</orcidid><orcidid>https://orcid.org/0000-0001-8095-9665</orcidid></search><sort><creationdate>20180901</creationdate><title>Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means</title><author>Xing, Kanglin ; Mayer, J.R.R. ; Achiche, Sofiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Clustering</topic><topic>Data acquisition</topic><topic>Data processing</topic><topic>Failure</topic><topic>Fault diagnosis</topic><topic>feature classification</topic><topic>Feature extraction</topic><topic>Five axis</topic><topic>K-means</topic><topic>Kinematics</topic><topic>Machine tools</topic><topic>Maintenance management</topic><topic>Manufacturing</topic><topic>Mechanical engineering</topic><topic>Methods</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>principal component analysis</topic><topic>Principal components analysis</topic><topic>Signal processing</topic><topic>volumetric errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Kanglin</creatorcontrib><creatorcontrib>Mayer, J.R.R.</creatorcontrib><creatorcontrib>Achiche, Sofiane</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM global</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Manufacturing and Materials Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Kanglin</au><au>Mayer, J.R.R.</au><au>Achiche, Sofiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means</atitle><jtitle>Journal of Manufacturing and Materials Processing</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>2</volume><issue>3</issue><spage>60</spage><pages>60-</pages><issn>2504-4494</issn><eissn>2504-4494</eissn><abstract>Volumetric errors (VE) are related to the machine tool accuracy state. Extracting features from the complex VE data provides with a means to characterize this data. VE feature classification can reveal the machine tool accuracy states. This paper presents a study on how to use principal component analysis (PCA) to extract the features of VE and how to use the K-means method for machine tool accuracy state classification. The proposed data processing methods have been tested with the VE data acquired from a five-axis machine tool with different states of malfunction. The results indicate that the PCA and K-means are capable of extracting the VE feature information and classifying the fault states including the C axis encoder fault, uncalibrated C axis encoder fault, and pallet location fault from the machine tool normal states. This research provides a new way for VE features extraction and classification.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmmp2030060</doi><orcidid>https://orcid.org/0000-0002-7730-0701</orcidid><orcidid>https://orcid.org/0000-0001-8095-9665</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-4494
ispartof Journal of Manufacturing and Materials Processing, 2018-09, Vol.2 (3), p.60
issn 2504-4494
2504-4494
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d682ac20c89948ee92c595a65ed19395
source ABI/INFORM global; Publicly Available Content (ProQuest)
subjects Accuracy
Classification
Clustering
Data acquisition
Data processing
Failure
Fault diagnosis
feature classification
Feature extraction
Five axis
K-means
Kinematics
Machine tools
Maintenance management
Manufacturing
Mechanical engineering
Methods
Monitoring systems
Neural networks
Pattern recognition
principal component analysis
Principal components analysis
Signal processing
volumetric errors
title Machine Tool Volumetric Error Features Extraction and Classification Using Principal Component Analysis and K-Means
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T15%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Tool%20Volumetric%20Error%20Features%20Extraction%20and%20Classification%20Using%20Principal%20Component%20Analysis%20and%20K-Means&rft.jtitle=Journal%20of%20Manufacturing%20and%20Materials%20Processing&rft.au=Xing,%20Kanglin&rft.date=2018-09-01&rft.volume=2&rft.issue=3&rft.spage=60&rft.pages=60-&rft.issn=2504-4494&rft.eissn=2504-4494&rft_id=info:doi/10.3390/jmmp2030060&rft_dat=%3Cproquest_doaj_%3E2121720057%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-11848c2c2eeaa7bfc9d745a0e22a48b10e834070ee62abf51c5c47acef1fe8323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121720057&rft_id=info:pmid/&rfr_iscdi=true