Loading…
Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?
Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and she...
Saved in:
Published in: | Biomolecules (Basel, Switzerland) Switzerland), 2018-09, Vol.8 (3), p.94 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683 |
---|---|
cites | cdi_FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683 |
container_end_page | |
container_issue | 3 |
container_start_page | 94 |
container_title | Biomolecules (Basel, Switzerland) |
container_volume | 8 |
creator | Pollet, Hélène Conrard, Louise Cloos, Anne-Sophie Tyteca, Donatienne |
description | Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution. |
doi_str_mv | 10.3390/biom8030094 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d6a75d93aa43437f96d29478f490dc91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d6a75d93aa43437f96d29478f490dc91</doaj_id><sourcerecordid>2109332690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683</originalsourceid><addsrcrecordid>eNpdkdtrFDEUh4MotrR98l0CvgiymuRkMsmLUuutsKUFL_gWTiaZbZaZyZrMCv73Td1atoaQ68fHj3MIecbZawDD3riYRs2AMSMfkUMhuF6IFn4-3jsfkJNS1qwOXaeAp-QAmBDQcDgkl1cDlhHpRRhdxinQZdxETz-kEeNUKBZagblPeSy0rvRHKLEbAn0f0ypM9VKZydOv18H7OK3eHZMnPQ4lnNztR-T7p4_fzr4slpefz89Ol4uu0TAvFHOmxUa43mvT695pbhQzngMP6IKXKFjjQDD0QikmtJfBO4kcu9Z3SsMROd95fcK13eQ4Yv5jE0b79yHllcU830a1XmHbeAOIEiS0vVFeGNnqXhrmO8Or6-3Otdm6MfguTHPG4YH04c8Ur-0q_baKK8kYVMHLO0FOv7ahzHaMpQvDUAuatsUKzgyAUIZV9MV_6Dpt81RLVSmhdCtb0VTq1Y7qciolh_4-DGf2tu92r--Vfr6f_57912W4Af-Rp_w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126874725</pqid></control><display><type>article</type><title>Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Pollet, Hélène ; Conrard, Louise ; Cloos, Anne-Sophie ; Tyteca, Donatienne</creator><creatorcontrib>Pollet, Hélène ; Conrard, Louise ; Cloos, Anne-Sophie ; Tyteca, Donatienne</creatorcontrib><description>Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.</description><identifier>ISSN: 2218-273X</identifier><identifier>EISSN: 2218-273X</identifier><identifier>DOI: 10.3390/biom8030094</identifier><identifier>PMID: 30223513</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Antigens ; Apoptosis ; Biophysical Phenomena ; Biosynthesis ; Blood ; Blood platelets ; calcium ; Cancer ; ceramide ; Cholesterol ; cytoskeleton ; Erythrocytes ; Exosomes ; Extracellular Vesicles - metabolism ; Hemoglobin ; Homeostasis ; Humans ; Lipid composition ; lipid domains ; Lipid rafts ; Lipids ; Membrane Microdomains - metabolism ; Microscopy ; microvesicle ; Models, Biological ; Neutrophils ; Oxidative stress ; raft ; red blood cell ; Review ; Senescence ; sphingomyelinase ; Tumor cells</subject><ispartof>Biomolecules (Basel, Switzerland), 2018-09, Vol.8 (3), p.94</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683</citedby><cites>FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683</cites><orcidid>0000-0002-7334-2648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2126874725/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2126874725?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30223513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pollet, Hélène</creatorcontrib><creatorcontrib>Conrard, Louise</creatorcontrib><creatorcontrib>Cloos, Anne-Sophie</creatorcontrib><creatorcontrib>Tyteca, Donatienne</creatorcontrib><title>Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?</title><title>Biomolecules (Basel, Switzerland)</title><addtitle>Biomolecules</addtitle><description>Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.</description><subject>Animals</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>Biophysical Phenomena</subject><subject>Biosynthesis</subject><subject>Blood</subject><subject>Blood platelets</subject><subject>calcium</subject><subject>Cancer</subject><subject>ceramide</subject><subject>Cholesterol</subject><subject>cytoskeleton</subject><subject>Erythrocytes</subject><subject>Exosomes</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Hemoglobin</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Lipid composition</subject><subject>lipid domains</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Membrane Microdomains - metabolism</subject><subject>Microscopy</subject><subject>microvesicle</subject><subject>Models, Biological</subject><subject>Neutrophils</subject><subject>Oxidative stress</subject><subject>raft</subject><subject>red blood cell</subject><subject>Review</subject><subject>Senescence</subject><subject>sphingomyelinase</subject><subject>Tumor cells</subject><issn>2218-273X</issn><issn>2218-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkdtrFDEUh4MotrR98l0CvgiymuRkMsmLUuutsKUFL_gWTiaZbZaZyZrMCv73Td1atoaQ68fHj3MIecbZawDD3riYRs2AMSMfkUMhuF6IFn4-3jsfkJNS1qwOXaeAp-QAmBDQcDgkl1cDlhHpRRhdxinQZdxETz-kEeNUKBZagblPeSy0rvRHKLEbAn0f0ypM9VKZydOv18H7OK3eHZMnPQ4lnNztR-T7p4_fzr4slpefz89Ol4uu0TAvFHOmxUa43mvT695pbhQzngMP6IKXKFjjQDD0QikmtJfBO4kcu9Z3SsMROd95fcK13eQ4Yv5jE0b79yHllcU830a1XmHbeAOIEiS0vVFeGNnqXhrmO8Or6-3Otdm6MfguTHPG4YH04c8Ur-0q_baKK8kYVMHLO0FOv7ahzHaMpQvDUAuatsUKzgyAUIZV9MV_6Dpt81RLVSmhdCtb0VTq1Y7qciolh_4-DGf2tu92r--Vfr6f_57912W4Af-Rp_w</recordid><startdate>20180914</startdate><enddate>20180914</enddate><creator>Pollet, Hélène</creator><creator>Conrard, Louise</creator><creator>Cloos, Anne-Sophie</creator><creator>Tyteca, Donatienne</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7334-2648</orcidid></search><sort><creationdate>20180914</creationdate><title>Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?</title><author>Pollet, Hélène ; Conrard, Louise ; Cloos, Anne-Sophie ; Tyteca, Donatienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>Biophysical Phenomena</topic><topic>Biosynthesis</topic><topic>Blood</topic><topic>Blood platelets</topic><topic>calcium</topic><topic>Cancer</topic><topic>ceramide</topic><topic>Cholesterol</topic><topic>cytoskeleton</topic><topic>Erythrocytes</topic><topic>Exosomes</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Hemoglobin</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Lipid composition</topic><topic>lipid domains</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Membrane Microdomains - metabolism</topic><topic>Microscopy</topic><topic>microvesicle</topic><topic>Models, Biological</topic><topic>Neutrophils</topic><topic>Oxidative stress</topic><topic>raft</topic><topic>red blood cell</topic><topic>Review</topic><topic>Senescence</topic><topic>sphingomyelinase</topic><topic>Tumor cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollet, Hélène</creatorcontrib><creatorcontrib>Conrard, Louise</creatorcontrib><creatorcontrib>Cloos, Anne-Sophie</creatorcontrib><creatorcontrib>Tyteca, Donatienne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomolecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pollet, Hélène</au><au>Conrard, Louise</au><au>Cloos, Anne-Sophie</au><au>Tyteca, Donatienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?</atitle><jtitle>Biomolecules (Basel, Switzerland)</jtitle><addtitle>Biomolecules</addtitle><date>2018-09-14</date><risdate>2018</risdate><volume>8</volume><issue>3</issue><spage>94</spage><pages>94-</pages><issn>2218-273X</issn><eissn>2218-273X</eissn><abstract>Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30223513</pmid><doi>10.3390/biom8030094</doi><orcidid>https://orcid.org/0000-0002-7334-2648</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2218-273X |
ispartof | Biomolecules (Basel, Switzerland), 2018-09, Vol.8 (3), p.94 |
issn | 2218-273X 2218-273X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d6a75d93aa43437f96d29478f490dc91 |
source | Publicly Available Content Database; PubMed Central |
subjects | Animals Antigens Apoptosis Biophysical Phenomena Biosynthesis Blood Blood platelets calcium Cancer ceramide Cholesterol cytoskeleton Erythrocytes Exosomes Extracellular Vesicles - metabolism Hemoglobin Homeostasis Humans Lipid composition lipid domains Lipid rafts Lipids Membrane Microdomains - metabolism Microscopy microvesicle Models, Biological Neutrophils Oxidative stress raft red blood cell Review Senescence sphingomyelinase Tumor cells |
title | Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20Membrane%20Lipid%20Domains%20as%20Platforms%20for%20Vesicle%20Biogenesis%20and%20Shedding?&rft.jtitle=Biomolecules%20(Basel,%20Switzerland)&rft.au=Pollet,%20H%C3%A9l%C3%A8ne&rft.date=2018-09-14&rft.volume=8&rft.issue=3&rft.spage=94&rft.pages=94-&rft.issn=2218-273X&rft.eissn=2218-273X&rft_id=info:doi/10.3390/biom8030094&rft_dat=%3Cproquest_doaj_%3E2109332690%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126874725&rft_id=info:pmid/30223513&rfr_iscdi=true |