Loading…

Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?

Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and she...

Full description

Saved in:
Bibliographic Details
Published in:Biomolecules (Basel, Switzerland) Switzerland), 2018-09, Vol.8 (3), p.94
Main Authors: Pollet, Hélène, Conrard, Louise, Cloos, Anne-Sophie, Tyteca, Donatienne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683
cites cdi_FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683
container_end_page
container_issue 3
container_start_page 94
container_title Biomolecules (Basel, Switzerland)
container_volume 8
creator Pollet, Hélène
Conrard, Louise
Cloos, Anne-Sophie
Tyteca, Donatienne
description Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.
doi_str_mv 10.3390/biom8030094
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d6a75d93aa43437f96d29478f490dc91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d6a75d93aa43437f96d29478f490dc91</doaj_id><sourcerecordid>2109332690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683</originalsourceid><addsrcrecordid>eNpdkdtrFDEUh4MotrR98l0CvgiymuRkMsmLUuutsKUFL_gWTiaZbZaZyZrMCv73Td1atoaQ68fHj3MIecbZawDD3riYRs2AMSMfkUMhuF6IFn4-3jsfkJNS1qwOXaeAp-QAmBDQcDgkl1cDlhHpRRhdxinQZdxETz-kEeNUKBZagblPeSy0rvRHKLEbAn0f0ypM9VKZydOv18H7OK3eHZMnPQ4lnNztR-T7p4_fzr4slpefz89Ol4uu0TAvFHOmxUa43mvT695pbhQzngMP6IKXKFjjQDD0QikmtJfBO4kcu9Z3SsMROd95fcK13eQ4Yv5jE0b79yHllcU830a1XmHbeAOIEiS0vVFeGNnqXhrmO8Or6-3Otdm6MfguTHPG4YH04c8Ur-0q_baKK8kYVMHLO0FOv7ahzHaMpQvDUAuatsUKzgyAUIZV9MV_6Dpt81RLVSmhdCtb0VTq1Y7qciolh_4-DGf2tu92r--Vfr6f_57912W4Af-Rp_w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126874725</pqid></control><display><type>article</type><title>Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Pollet, Hélène ; Conrard, Louise ; Cloos, Anne-Sophie ; Tyteca, Donatienne</creator><creatorcontrib>Pollet, Hélène ; Conrard, Louise ; Cloos, Anne-Sophie ; Tyteca, Donatienne</creatorcontrib><description>Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.</description><identifier>ISSN: 2218-273X</identifier><identifier>EISSN: 2218-273X</identifier><identifier>DOI: 10.3390/biom8030094</identifier><identifier>PMID: 30223513</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Antigens ; Apoptosis ; Biophysical Phenomena ; Biosynthesis ; Blood ; Blood platelets ; calcium ; Cancer ; ceramide ; Cholesterol ; cytoskeleton ; Erythrocytes ; Exosomes ; Extracellular Vesicles - metabolism ; Hemoglobin ; Homeostasis ; Humans ; Lipid composition ; lipid domains ; Lipid rafts ; Lipids ; Membrane Microdomains - metabolism ; Microscopy ; microvesicle ; Models, Biological ; Neutrophils ; Oxidative stress ; raft ; red blood cell ; Review ; Senescence ; sphingomyelinase ; Tumor cells</subject><ispartof>Biomolecules (Basel, Switzerland), 2018-09, Vol.8 (3), p.94</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683</citedby><cites>FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683</cites><orcidid>0000-0002-7334-2648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2126874725/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2126874725?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30223513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pollet, Hélène</creatorcontrib><creatorcontrib>Conrard, Louise</creatorcontrib><creatorcontrib>Cloos, Anne-Sophie</creatorcontrib><creatorcontrib>Tyteca, Donatienne</creatorcontrib><title>Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?</title><title>Biomolecules (Basel, Switzerland)</title><addtitle>Biomolecules</addtitle><description>Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.</description><subject>Animals</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>Biophysical Phenomena</subject><subject>Biosynthesis</subject><subject>Blood</subject><subject>Blood platelets</subject><subject>calcium</subject><subject>Cancer</subject><subject>ceramide</subject><subject>Cholesterol</subject><subject>cytoskeleton</subject><subject>Erythrocytes</subject><subject>Exosomes</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Hemoglobin</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Lipid composition</subject><subject>lipid domains</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Membrane Microdomains - metabolism</subject><subject>Microscopy</subject><subject>microvesicle</subject><subject>Models, Biological</subject><subject>Neutrophils</subject><subject>Oxidative stress</subject><subject>raft</subject><subject>red blood cell</subject><subject>Review</subject><subject>Senescence</subject><subject>sphingomyelinase</subject><subject>Tumor cells</subject><issn>2218-273X</issn><issn>2218-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkdtrFDEUh4MotrR98l0CvgiymuRkMsmLUuutsKUFL_gWTiaZbZaZyZrMCv73Td1atoaQ68fHj3MIecbZawDD3riYRs2AMSMfkUMhuF6IFn4-3jsfkJNS1qwOXaeAp-QAmBDQcDgkl1cDlhHpRRhdxinQZdxETz-kEeNUKBZagblPeSy0rvRHKLEbAn0f0ypM9VKZydOv18H7OK3eHZMnPQ4lnNztR-T7p4_fzr4slpefz89Ol4uu0TAvFHOmxUa43mvT695pbhQzngMP6IKXKFjjQDD0QikmtJfBO4kcu9Z3SsMROd95fcK13eQ4Yv5jE0b79yHllcU830a1XmHbeAOIEiS0vVFeGNnqXhrmO8Or6-3Otdm6MfguTHPG4YH04c8Ur-0q_baKK8kYVMHLO0FOv7ahzHaMpQvDUAuatsUKzgyAUIZV9MV_6Dpt81RLVSmhdCtb0VTq1Y7qciolh_4-DGf2tu92r--Vfr6f_57912W4Af-Rp_w</recordid><startdate>20180914</startdate><enddate>20180914</enddate><creator>Pollet, Hélène</creator><creator>Conrard, Louise</creator><creator>Cloos, Anne-Sophie</creator><creator>Tyteca, Donatienne</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7334-2648</orcidid></search><sort><creationdate>20180914</creationdate><title>Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?</title><author>Pollet, Hélène ; Conrard, Louise ; Cloos, Anne-Sophie ; Tyteca, Donatienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>Biophysical Phenomena</topic><topic>Biosynthesis</topic><topic>Blood</topic><topic>Blood platelets</topic><topic>calcium</topic><topic>Cancer</topic><topic>ceramide</topic><topic>Cholesterol</topic><topic>cytoskeleton</topic><topic>Erythrocytes</topic><topic>Exosomes</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Hemoglobin</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Lipid composition</topic><topic>lipid domains</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Membrane Microdomains - metabolism</topic><topic>Microscopy</topic><topic>microvesicle</topic><topic>Models, Biological</topic><topic>Neutrophils</topic><topic>Oxidative stress</topic><topic>raft</topic><topic>red blood cell</topic><topic>Review</topic><topic>Senescence</topic><topic>sphingomyelinase</topic><topic>Tumor cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollet, Hélène</creatorcontrib><creatorcontrib>Conrard, Louise</creatorcontrib><creatorcontrib>Cloos, Anne-Sophie</creatorcontrib><creatorcontrib>Tyteca, Donatienne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomolecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pollet, Hélène</au><au>Conrard, Louise</au><au>Cloos, Anne-Sophie</au><au>Tyteca, Donatienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?</atitle><jtitle>Biomolecules (Basel, Switzerland)</jtitle><addtitle>Biomolecules</addtitle><date>2018-09-14</date><risdate>2018</risdate><volume>8</volume><issue>3</issue><spage>94</spage><pages>94-</pages><issn>2218-273X</issn><eissn>2218-273X</eissn><abstract>Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30223513</pmid><doi>10.3390/biom8030094</doi><orcidid>https://orcid.org/0000-0002-7334-2648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2218-273X
ispartof Biomolecules (Basel, Switzerland), 2018-09, Vol.8 (3), p.94
issn 2218-273X
2218-273X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d6a75d93aa43437f96d29478f490dc91
source Publicly Available Content Database; PubMed Central
subjects Animals
Antigens
Apoptosis
Biophysical Phenomena
Biosynthesis
Blood
Blood platelets
calcium
Cancer
ceramide
Cholesterol
cytoskeleton
Erythrocytes
Exosomes
Extracellular Vesicles - metabolism
Hemoglobin
Homeostasis
Humans
Lipid composition
lipid domains
Lipid rafts
Lipids
Membrane Microdomains - metabolism
Microscopy
microvesicle
Models, Biological
Neutrophils
Oxidative stress
raft
red blood cell
Review
Senescence
sphingomyelinase
Tumor cells
title Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20Membrane%20Lipid%20Domains%20as%20Platforms%20for%20Vesicle%20Biogenesis%20and%20Shedding?&rft.jtitle=Biomolecules%20(Basel,%20Switzerland)&rft.au=Pollet,%20H%C3%A9l%C3%A8ne&rft.date=2018-09-14&rft.volume=8&rft.issue=3&rft.spage=94&rft.pages=94-&rft.issn=2218-273X&rft.eissn=2218-273X&rft_id=info:doi/10.3390/biom8030094&rft_dat=%3Cproquest_doaj_%3E2109332690%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-60b97a52bfd89f8fb819609d131eabed4a205b320ad266028d4edb4a1ac7dc683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126874725&rft_id=info:pmid/30223513&rfr_iscdi=true