Loading…
Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios
Mobile edge computing (MEC) has become an effective solution for insufficient computing and communication problems for the Internet of Things (IoT) applications due to its rich computing resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has an important imp...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-09, Vol.22 (18), p.6719 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3 |
container_end_page | |
container_issue | 18 |
container_start_page | 6719 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 22 |
creator | Li, Danyang Mao, Yuxing Chen, Xueshuo Li, Jian Liu, Siyang |
description | Mobile edge computing (MEC) has become an effective solution for insufficient computing and communication problems for the Internet of Things (IoT) applications due to its rich computing resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has an important impact on system performance and has become an essential issue in end–edge–cloud architecture. In this article, we consider specific factors, such as spatial location, power supply, and urgency requirements of terminals, with respect to building an evaluation model to solve the allocation problem. An evaluation model based on reward, energy consumption, and cost factors is proposed. The genetic algorithm is applied to determine the optimal edge node deployment and allocation strategies. Moreover, we compare the proposed method with the k-means and ant colony algorithms. The results show that the obtained strategies achieve good evaluation results under problem constraints. Furthermore, we conduct comparison tests with different attributes to further test the performance of the proposed method. |
doi_str_mv | 10.3390/s22186719 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d6ad5d459a5545dd8365c3f81ce41336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746532130</galeid><doaj_id>oai_doaj_org_article_d6ad5d459a5545dd8365c3f81ce41336</doaj_id><sourcerecordid>A746532130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEog9Y8A8ssYFFih0_4myQRkMplVpYdFhbN_bN4JETD3aCmH-P6VQVRV7Yuj73Oz7Wrao3jF5w3tEPuWmYVi3rnlWnTDSi1k1Dn_9zPqnOct5R2nDO9cvqhCsmFFXdabX5hPsQDyNOM4HJkVUI0cLs40Tu5gQzbg9kiIncXq7J1-gwEz-RdRz3AX-T2yXMvt5gGv0EgdxZnCD5mF9VLwYIGV8_7OfV98-Xm_WX-ubb1fV6dVNboeVcg4BGctZqrtoOehh6YZUEha7nukfL0TKLauhRSbS2d70FgZ3rwHZqAMvPq-sj10XYmX3yI6SDieDNfSGmrYE0exvQOAVOOiE7kFJI54qntHzQxUAwzlVhfTyy9ks_oitRSvzwBPr0ZvI_zDb-Mp2kUgleAO8eACn-XDDPZvTZYggwYVyyaVrWKt0ypov07X_SXVxS-cJ7lVJUi5YV1cVRtYUSwE9DLL62LIejt3HCwZf6qhVK8oZxWhreHxtsijknHB5fz6j5OyjmcVD4H4SBr2k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716608471</pqid></control><display><type>article</type><title>Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Li, Danyang ; Mao, Yuxing ; Chen, Xueshuo ; Li, Jian ; Liu, Siyang</creator><creatorcontrib>Li, Danyang ; Mao, Yuxing ; Chen, Xueshuo ; Li, Jian ; Liu, Siyang</creatorcontrib><description>Mobile edge computing (MEC) has become an effective solution for insufficient computing and communication problems for the Internet of Things (IoT) applications due to its rich computing resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has an important impact on system performance and has become an essential issue in end–edge–cloud architecture. In this article, we consider specific factors, such as spatial location, power supply, and urgency requirements of terminals, with respect to building an evaluation model to solve the allocation problem. An evaluation model based on reward, energy consumption, and cost factors is proposed. The genetic algorithm is applied to determine the optimal edge node deployment and allocation strategies. Moreover, we compare the proposed method with the k-means and ant colony algorithms. The results show that the obtained strategies achieve good evaluation results under problem constraints. Furthermore, we conduct comparison tests with different attributes to further test the performance of the proposed method.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22186719</identifier><identifier>PMID: 36146069</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Computer architecture ; Data processing ; Design ; edge node deployment ; Energy consumption ; genetic algorithm ; Genetic algorithms ; Industrial design ; Internet of Things ; Literature reviews ; mobile edge computing ; Nodes ; Optimization algorithms ; Performance evaluation ; Power supply</subject><ispartof>Sensors (Basel, Switzerland), 2022-09, Vol.22 (18), p.6719</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3</citedby><cites>FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3</cites><orcidid>0000-0002-1829-4719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716608471/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716608471?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Mao, Yuxing</creatorcontrib><creatorcontrib>Chen, Xueshuo</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><title>Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios</title><title>Sensors (Basel, Switzerland)</title><description>Mobile edge computing (MEC) has become an effective solution for insufficient computing and communication problems for the Internet of Things (IoT) applications due to its rich computing resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has an important impact on system performance and has become an essential issue in end–edge–cloud architecture. In this article, we consider specific factors, such as spatial location, power supply, and urgency requirements of terminals, with respect to building an evaluation model to solve the allocation problem. An evaluation model based on reward, energy consumption, and cost factors is proposed. The genetic algorithm is applied to determine the optimal edge node deployment and allocation strategies. Moreover, we compare the proposed method with the k-means and ant colony algorithms. The results show that the obtained strategies achieve good evaluation results under problem constraints. Furthermore, we conduct comparison tests with different attributes to further test the performance of the proposed method.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Computer architecture</subject><subject>Data processing</subject><subject>Design</subject><subject>edge node deployment</subject><subject>Energy consumption</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Industrial design</subject><subject>Internet of Things</subject><subject>Literature reviews</subject><subject>mobile edge computing</subject><subject>Nodes</subject><subject>Optimization algorithms</subject><subject>Performance evaluation</subject><subject>Power supply</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAUhSMEog9Y8A8ssYFFih0_4myQRkMplVpYdFhbN_bN4JETD3aCmH-P6VQVRV7Yuj73Oz7Wrao3jF5w3tEPuWmYVi3rnlWnTDSi1k1Dn_9zPqnOct5R2nDO9cvqhCsmFFXdabX5hPsQDyNOM4HJkVUI0cLs40Tu5gQzbg9kiIncXq7J1-gwEz-RdRz3AX-T2yXMvt5gGv0EgdxZnCD5mF9VLwYIGV8_7OfV98-Xm_WX-ubb1fV6dVNboeVcg4BGctZqrtoOehh6YZUEha7nukfL0TKLauhRSbS2d70FgZ3rwHZqAMvPq-sj10XYmX3yI6SDieDNfSGmrYE0exvQOAVOOiE7kFJI54qntHzQxUAwzlVhfTyy9ks_oitRSvzwBPr0ZvI_zDb-Mp2kUgleAO8eACn-XDDPZvTZYggwYVyyaVrWKt0ypov07X_SXVxS-cJ7lVJUi5YV1cVRtYUSwE9DLL62LIejt3HCwZf6qhVK8oZxWhreHxtsijknHB5fz6j5OyjmcVD4H4SBr2k</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Li, Danyang</creator><creator>Mao, Yuxing</creator><creator>Chen, Xueshuo</creator><creator>Li, Jian</creator><creator>Liu, Siyang</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1829-4719</orcidid></search><sort><creationdate>20220901</creationdate><title>Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios</title><author>Li, Danyang ; Mao, Yuxing ; Chen, Xueshuo ; Li, Jian ; Liu, Siyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Computer architecture</topic><topic>Data processing</topic><topic>Design</topic><topic>edge node deployment</topic><topic>Energy consumption</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Industrial design</topic><topic>Internet of Things</topic><topic>Literature reviews</topic><topic>mobile edge computing</topic><topic>Nodes</topic><topic>Optimization algorithms</topic><topic>Performance evaluation</topic><topic>Power supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Mao, Yuxing</creatorcontrib><creatorcontrib>Chen, Xueshuo</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Danyang</au><au>Mao, Yuxing</au><au>Chen, Xueshuo</au><au>Li, Jian</au><au>Liu, Siyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>22</volume><issue>18</issue><spage>6719</spage><pages>6719-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Mobile edge computing (MEC) has become an effective solution for insufficient computing and communication problems for the Internet of Things (IoT) applications due to its rich computing resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has an important impact on system performance and has become an essential issue in end–edge–cloud architecture. In this article, we consider specific factors, such as spatial location, power supply, and urgency requirements of terminals, with respect to building an evaluation model to solve the allocation problem. An evaluation model based on reward, energy consumption, and cost factors is proposed. The genetic algorithm is applied to determine the optimal edge node deployment and allocation strategies. Moreover, we compare the proposed method with the k-means and ant colony algorithms. The results show that the obtained strategies achieve good evaluation results under problem constraints. Furthermore, we conduct comparison tests with different attributes to further test the performance of the proposed method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36146069</pmid><doi>10.3390/s22186719</doi><orcidid>https://orcid.org/0000-0002-1829-4719</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2022-09, Vol.22 (18), p.6719 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d6ad5d459a5545dd8365c3f81ce41336 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Analysis Artificial intelligence Computer architecture Data processing Design edge node deployment Energy consumption genetic algorithm Genetic algorithms Industrial design Internet of Things Literature reviews mobile edge computing Nodes Optimization algorithms Performance evaluation Power supply |
title | Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deployment%20and%20Allocation%20Strategy%20for%20MEC%20Nodes%20in%20Complex%20Multi-Terminal%20Scenarios&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Li,%20Danyang&rft.date=2022-09-01&rft.volume=22&rft.issue=18&rft.spage=6719&rft.pages=6719-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22186719&rft_dat=%3Cgale_doaj_%3EA746532130%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716608471&rft_id=info:pmid/36146069&rft_galeid=A746532130&rfr_iscdi=true |