Loading…

Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios

Mobile edge computing (MEC) has become an effective solution for insufficient computing and communication problems for the Internet of Things (IoT) applications due to its rich computing resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has an important imp...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-09, Vol.22 (18), p.6719
Main Authors: Li, Danyang, Mao, Yuxing, Chen, Xueshuo, Li, Jian, Liu, Siyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3
cites cdi_FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3
container_end_page
container_issue 18
container_start_page 6719
container_title Sensors (Basel, Switzerland)
container_volume 22
creator Li, Danyang
Mao, Yuxing
Chen, Xueshuo
Li, Jian
Liu, Siyang
description Mobile edge computing (MEC) has become an effective solution for insufficient computing and communication problems for the Internet of Things (IoT) applications due to its rich computing resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has an important impact on system performance and has become an essential issue in end–edge–cloud architecture. In this article, we consider specific factors, such as spatial location, power supply, and urgency requirements of terminals, with respect to building an evaluation model to solve the allocation problem. An evaluation model based on reward, energy consumption, and cost factors is proposed. The genetic algorithm is applied to determine the optimal edge node deployment and allocation strategies. Moreover, we compare the proposed method with the k-means and ant colony algorithms. The results show that the obtained strategies achieve good evaluation results under problem constraints. Furthermore, we conduct comparison tests with different attributes to further test the performance of the proposed method.
doi_str_mv 10.3390/s22186719
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d6ad5d459a5545dd8365c3f81ce41336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746532130</galeid><doaj_id>oai_doaj_org_article_d6ad5d459a5545dd8365c3f81ce41336</doaj_id><sourcerecordid>A746532130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEog9Y8A8ssYFFih0_4myQRkMplVpYdFhbN_bN4JETD3aCmH-P6VQVRV7Yuj73Oz7Wrao3jF5w3tEPuWmYVi3rnlWnTDSi1k1Dn_9zPqnOct5R2nDO9cvqhCsmFFXdabX5hPsQDyNOM4HJkVUI0cLs40Tu5gQzbg9kiIncXq7J1-gwEz-RdRz3AX-T2yXMvt5gGv0EgdxZnCD5mF9VLwYIGV8_7OfV98-Xm_WX-ubb1fV6dVNboeVcg4BGctZqrtoOehh6YZUEha7nukfL0TKLauhRSbS2d70FgZ3rwHZqAMvPq-sj10XYmX3yI6SDieDNfSGmrYE0exvQOAVOOiE7kFJI54qntHzQxUAwzlVhfTyy9ks_oitRSvzwBPr0ZvI_zDb-Mp2kUgleAO8eACn-XDDPZvTZYggwYVyyaVrWKt0ypov07X_SXVxS-cJ7lVJUi5YV1cVRtYUSwE9DLL62LIejt3HCwZf6qhVK8oZxWhreHxtsijknHB5fz6j5OyjmcVD4H4SBr2k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716608471</pqid></control><display><type>article</type><title>Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Li, Danyang ; Mao, Yuxing ; Chen, Xueshuo ; Li, Jian ; Liu, Siyang</creator><creatorcontrib>Li, Danyang ; Mao, Yuxing ; Chen, Xueshuo ; Li, Jian ; Liu, Siyang</creatorcontrib><description>Mobile edge computing (MEC) has become an effective solution for insufficient computing and communication problems for the Internet of Things (IoT) applications due to its rich computing resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has an important impact on system performance and has become an essential issue in end–edge–cloud architecture. In this article, we consider specific factors, such as spatial location, power supply, and urgency requirements of terminals, with respect to building an evaluation model to solve the allocation problem. An evaluation model based on reward, energy consumption, and cost factors is proposed. The genetic algorithm is applied to determine the optimal edge node deployment and allocation strategies. Moreover, we compare the proposed method with the k-means and ant colony algorithms. The results show that the obtained strategies achieve good evaluation results under problem constraints. Furthermore, we conduct comparison tests with different attributes to further test the performance of the proposed method.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22186719</identifier><identifier>PMID: 36146069</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Computer architecture ; Data processing ; Design ; edge node deployment ; Energy consumption ; genetic algorithm ; Genetic algorithms ; Industrial design ; Internet of Things ; Literature reviews ; mobile edge computing ; Nodes ; Optimization algorithms ; Performance evaluation ; Power supply</subject><ispartof>Sensors (Basel, Switzerland), 2022-09, Vol.22 (18), p.6719</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3</citedby><cites>FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3</cites><orcidid>0000-0002-1829-4719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716608471/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716608471?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Mao, Yuxing</creatorcontrib><creatorcontrib>Chen, Xueshuo</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><title>Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios</title><title>Sensors (Basel, Switzerland)</title><description>Mobile edge computing (MEC) has become an effective solution for insufficient computing and communication problems for the Internet of Things (IoT) applications due to its rich computing resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has an important impact on system performance and has become an essential issue in end–edge–cloud architecture. In this article, we consider specific factors, such as spatial location, power supply, and urgency requirements of terminals, with respect to building an evaluation model to solve the allocation problem. An evaluation model based on reward, energy consumption, and cost factors is proposed. The genetic algorithm is applied to determine the optimal edge node deployment and allocation strategies. Moreover, we compare the proposed method with the k-means and ant colony algorithms. The results show that the obtained strategies achieve good evaluation results under problem constraints. Furthermore, we conduct comparison tests with different attributes to further test the performance of the proposed method.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Computer architecture</subject><subject>Data processing</subject><subject>Design</subject><subject>edge node deployment</subject><subject>Energy consumption</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Industrial design</subject><subject>Internet of Things</subject><subject>Literature reviews</subject><subject>mobile edge computing</subject><subject>Nodes</subject><subject>Optimization algorithms</subject><subject>Performance evaluation</subject><subject>Power supply</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAUhSMEog9Y8A8ssYFFih0_4myQRkMplVpYdFhbN_bN4JETD3aCmH-P6VQVRV7Yuj73Oz7Wrao3jF5w3tEPuWmYVi3rnlWnTDSi1k1Dn_9zPqnOct5R2nDO9cvqhCsmFFXdabX5hPsQDyNOM4HJkVUI0cLs40Tu5gQzbg9kiIncXq7J1-gwEz-RdRz3AX-T2yXMvt5gGv0EgdxZnCD5mF9VLwYIGV8_7OfV98-Xm_WX-ubb1fV6dVNboeVcg4BGctZqrtoOehh6YZUEha7nukfL0TKLauhRSbS2d70FgZ3rwHZqAMvPq-sj10XYmX3yI6SDieDNfSGmrYE0exvQOAVOOiE7kFJI54qntHzQxUAwzlVhfTyy9ks_oitRSvzwBPr0ZvI_zDb-Mp2kUgleAO8eACn-XDDPZvTZYggwYVyyaVrWKt0ypov07X_SXVxS-cJ7lVJUi5YV1cVRtYUSwE9DLL62LIejt3HCwZf6qhVK8oZxWhreHxtsijknHB5fz6j5OyjmcVD4H4SBr2k</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Li, Danyang</creator><creator>Mao, Yuxing</creator><creator>Chen, Xueshuo</creator><creator>Li, Jian</creator><creator>Liu, Siyang</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1829-4719</orcidid></search><sort><creationdate>20220901</creationdate><title>Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios</title><author>Li, Danyang ; Mao, Yuxing ; Chen, Xueshuo ; Li, Jian ; Liu, Siyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Computer architecture</topic><topic>Data processing</topic><topic>Design</topic><topic>edge node deployment</topic><topic>Energy consumption</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Industrial design</topic><topic>Internet of Things</topic><topic>Literature reviews</topic><topic>mobile edge computing</topic><topic>Nodes</topic><topic>Optimization algorithms</topic><topic>Performance evaluation</topic><topic>Power supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Mao, Yuxing</creatorcontrib><creatorcontrib>Chen, Xueshuo</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Danyang</au><au>Mao, Yuxing</au><au>Chen, Xueshuo</au><au>Li, Jian</au><au>Liu, Siyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>22</volume><issue>18</issue><spage>6719</spage><pages>6719-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Mobile edge computing (MEC) has become an effective solution for insufficient computing and communication problems for the Internet of Things (IoT) applications due to its rich computing resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has an important impact on system performance and has become an essential issue in end–edge–cloud architecture. In this article, we consider specific factors, such as spatial location, power supply, and urgency requirements of terminals, with respect to building an evaluation model to solve the allocation problem. An evaluation model based on reward, energy consumption, and cost factors is proposed. The genetic algorithm is applied to determine the optimal edge node deployment and allocation strategies. Moreover, we compare the proposed method with the k-means and ant colony algorithms. The results show that the obtained strategies achieve good evaluation results under problem constraints. Furthermore, we conduct comparison tests with different attributes to further test the performance of the proposed method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36146069</pmid><doi>10.3390/s22186719</doi><orcidid>https://orcid.org/0000-0002-1829-4719</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2022-09, Vol.22 (18), p.6719
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d6ad5d459a5545dd8365c3f81ce41336
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Analysis
Artificial intelligence
Computer architecture
Data processing
Design
edge node deployment
Energy consumption
genetic algorithm
Genetic algorithms
Industrial design
Internet of Things
Literature reviews
mobile edge computing
Nodes
Optimization algorithms
Performance evaluation
Power supply
title Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deployment%20and%20Allocation%20Strategy%20for%20MEC%20Nodes%20in%20Complex%20Multi-Terminal%20Scenarios&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Li,%20Danyang&rft.date=2022-09-01&rft.volume=22&rft.issue=18&rft.spage=6719&rft.pages=6719-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22186719&rft_dat=%3Cgale_doaj_%3EA746532130%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-a4a2531783679abafb4c65a6edb38bec3ec1ce6fbe65eccbdbca4e9d9ac96fac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716608471&rft_id=info:pmid/36146069&rft_galeid=A746532130&rfr_iscdi=true