Loading…

Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction

In recent years, magnetic refrigeration has attracted considerable attention for hydrogen liquefaction. Most materials used for magnetic refrigeration contain heavy rare earth ions with complex crystalline electric field energy splittings, whose effect on the magnetic entropy change Δ S M has not be...

Full description

Saved in:
Bibliographic Details
Published in:Communications materials 2023-02, Vol.4 (1), p.13-9, Article 13
Main Authors: Terada, Noriki, Mamiya, Hiroaki, Saito, Hiraku, Nakajima, Taro, Yamamoto, Takafumi D., Terashima, Kensei, Takeya, Hiroyuki, Sakai, Osamu, Itoh, Shinichi, Takano, Yoshihiko, Hase, Masashi, Kitazawa, Hideaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3
cites cdi_FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3
container_end_page 9
container_issue 1
container_start_page 13
container_title Communications materials
container_volume 4
creator Terada, Noriki
Mamiya, Hiroaki
Saito, Hiraku
Nakajima, Taro
Yamamoto, Takafumi D.
Terashima, Kensei
Takeya, Hiroyuki
Sakai, Osamu
Itoh, Shinichi
Takano, Yoshihiko
Hase, Masashi
Kitazawa, Hideaki
description In recent years, magnetic refrigeration has attracted considerable attention for hydrogen liquefaction. Most materials used for magnetic refrigeration contain heavy rare earth ions with complex crystalline electric field energy splittings, whose effect on the magnetic entropy change Δ S M has not been systematically studied. In particular, the theoretical upper limits of ∣Δ S M ∣ for general heavy earth cases are unknown. Here, we show that the crystalline electric field level schemes result in a large Δ S M for general heavy rare earth cases. We provide a specific example of the magnetic refrigeration material HoB 2 using inelastic neutron scattering experiments combined with mean-field calculations with crystal field splitting and exchange interactions. The relationship between Δ S M and crystal field parameters presented in this study can be useful for developing compounds with a large ∣Δ S M ∣ and advancing the design of magnetic refrigeration materials. Magnetic refrigeration materials containing rare-earth ions are promising for hydrogen liquefaction and energy storage applications. Here, the role of crystal-field level splitting on magnetic entropy change is systematically investigated, comparing mean-field calculations with neutron scattering experiments in HoB 2 .
doi_str_mv 10.1038/s43246-023-00340-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d6c9bb420f704c7083387b7b94257ac4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d6c9bb420f704c7083387b7b94257ac4</doaj_id><sourcerecordid>2776892488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3</originalsourceid><addsrcrecordid>eNp9kVtrFTEUhQdRsNT-AZ8CPo_uXGaSeZSDl0LBF30OuexMc8iZ1CQVTn-9aaeoTz7lwvrW3os1DG8pvKfA1YcqOBPzCIyPAFzA-PBiuGDzzEYhBH_5z_31cFXrEQDYROks4GLwh3KuzSSCCV0r0ZEQMXmS8BcmUt0tnrA_jI_bSlomazRbIyezbtiyMyk_IhhCh0nIhdyefckrbiTFn_cYjGsxb2-GV8GkilfP5-Xw4_On74ev4823L9eHjzejE8vURitgMoBeCRA8iABAPbWGUrkocAa45ajQMaYW6i3OYHvciS0g6SJQWn45XO--PpujvivxZMpZZxP100cuqzalRZdQ-9kt1goGQYJwEhTnSlppF8EmaZzoXu92r7uSe5La9DHfl62vr5mUs1qYUKqr2K5yJddaMPyZSkE_lqP3cnQvRz-Vox86xHeodvG2Yvlr_R_qN0Zlkf4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776892488</pqid></control><display><type>article</type><title>Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Terada, Noriki ; Mamiya, Hiroaki ; Saito, Hiraku ; Nakajima, Taro ; Yamamoto, Takafumi D. ; Terashima, Kensei ; Takeya, Hiroyuki ; Sakai, Osamu ; Itoh, Shinichi ; Takano, Yoshihiko ; Hase, Masashi ; Kitazawa, Hideaki</creator><creatorcontrib>Terada, Noriki ; Mamiya, Hiroaki ; Saito, Hiraku ; Nakajima, Taro ; Yamamoto, Takafumi D. ; Terashima, Kensei ; Takeya, Hiroyuki ; Sakai, Osamu ; Itoh, Shinichi ; Takano, Yoshihiko ; Hase, Masashi ; Kitazawa, Hideaki</creatorcontrib><description>In recent years, magnetic refrigeration has attracted considerable attention for hydrogen liquefaction. Most materials used for magnetic refrigeration contain heavy rare earth ions with complex crystalline electric field energy splittings, whose effect on the magnetic entropy change Δ S M has not been systematically studied. In particular, the theoretical upper limits of ∣Δ S M ∣ for general heavy earth cases are unknown. Here, we show that the crystalline electric field level schemes result in a large Δ S M for general heavy rare earth cases. We provide a specific example of the magnetic refrigeration material HoB 2 using inelastic neutron scattering experiments combined with mean-field calculations with crystal field splitting and exchange interactions. The relationship between Δ S M and crystal field parameters presented in this study can be useful for developing compounds with a large ∣Δ S M ∣ and advancing the design of magnetic refrigeration materials. Magnetic refrigeration materials containing rare-earth ions are promising for hydrogen liquefaction and energy storage applications. Here, the role of crystal-field level splitting on magnetic entropy change is systematically investigated, comparing mean-field calculations with neutron scattering experiments in HoB 2 .</description><identifier>ISSN: 2662-4443</identifier><identifier>EISSN: 2662-4443</identifier><identifier>DOI: 10.1038/s43246-023-00340-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2793 ; 639/301/119/997 ; Chemistry and Materials Science ; Crystals ; Electric fields ; Energy storage ; Entropy ; Inelastic scattering ; Liquefaction ; Materials Science ; Mathematical analysis ; Metal ions ; Neutron scattering ; Neutrons ; Rare earth elements ; Refrigeration ; Splitting</subject><ispartof>Communications materials, 2023-02, Vol.4 (1), p.13-9, Article 13</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3</citedby><cites>FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3</cites><orcidid>0000-0002-4646-2580 ; 0000-0002-8676-5586 ; 0000-0002-7840-3008 ; 0000-0001-6557-5508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2776892488?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Terada, Noriki</creatorcontrib><creatorcontrib>Mamiya, Hiroaki</creatorcontrib><creatorcontrib>Saito, Hiraku</creatorcontrib><creatorcontrib>Nakajima, Taro</creatorcontrib><creatorcontrib>Yamamoto, Takafumi D.</creatorcontrib><creatorcontrib>Terashima, Kensei</creatorcontrib><creatorcontrib>Takeya, Hiroyuki</creatorcontrib><creatorcontrib>Sakai, Osamu</creatorcontrib><creatorcontrib>Itoh, Shinichi</creatorcontrib><creatorcontrib>Takano, Yoshihiko</creatorcontrib><creatorcontrib>Hase, Masashi</creatorcontrib><creatorcontrib>Kitazawa, Hideaki</creatorcontrib><title>Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction</title><title>Communications materials</title><addtitle>Commun Mater</addtitle><description>In recent years, magnetic refrigeration has attracted considerable attention for hydrogen liquefaction. Most materials used for magnetic refrigeration contain heavy rare earth ions with complex crystalline electric field energy splittings, whose effect on the magnetic entropy change Δ S M has not been systematically studied. In particular, the theoretical upper limits of ∣Δ S M ∣ for general heavy earth cases are unknown. Here, we show that the crystalline electric field level schemes result in a large Δ S M for general heavy rare earth cases. We provide a specific example of the magnetic refrigeration material HoB 2 using inelastic neutron scattering experiments combined with mean-field calculations with crystal field splitting and exchange interactions. The relationship between Δ S M and crystal field parameters presented in this study can be useful for developing compounds with a large ∣Δ S M ∣ and advancing the design of magnetic refrigeration materials. Magnetic refrigeration materials containing rare-earth ions are promising for hydrogen liquefaction and energy storage applications. Here, the role of crystal-field level splitting on magnetic entropy change is systematically investigated, comparing mean-field calculations with neutron scattering experiments in HoB 2 .</description><subject>639/301/119/2793</subject><subject>639/301/119/997</subject><subject>Chemistry and Materials Science</subject><subject>Crystals</subject><subject>Electric fields</subject><subject>Energy storage</subject><subject>Entropy</subject><subject>Inelastic scattering</subject><subject>Liquefaction</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metal ions</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Rare earth elements</subject><subject>Refrigeration</subject><subject>Splitting</subject><issn>2662-4443</issn><issn>2662-4443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kVtrFTEUhQdRsNT-AZ8CPo_uXGaSeZSDl0LBF30OuexMc8iZ1CQVTn-9aaeoTz7lwvrW3os1DG8pvKfA1YcqOBPzCIyPAFzA-PBiuGDzzEYhBH_5z_31cFXrEQDYROks4GLwh3KuzSSCCV0r0ZEQMXmS8BcmUt0tnrA_jI_bSlomazRbIyezbtiyMyk_IhhCh0nIhdyefckrbiTFn_cYjGsxb2-GV8GkilfP5-Xw4_On74ev4823L9eHjzejE8vURitgMoBeCRA8iABAPbWGUrkocAa45ajQMaYW6i3OYHvciS0g6SJQWn45XO--PpujvivxZMpZZxP100cuqzalRZdQ-9kt1goGQYJwEhTnSlppF8EmaZzoXu92r7uSe5La9DHfl62vr5mUs1qYUKqr2K5yJddaMPyZSkE_lqP3cnQvRz-Vox86xHeodvG2Yvlr_R_qN0Zlkf4</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Terada, Noriki</creator><creator>Mamiya, Hiroaki</creator><creator>Saito, Hiraku</creator><creator>Nakajima, Taro</creator><creator>Yamamoto, Takafumi D.</creator><creator>Terashima, Kensei</creator><creator>Takeya, Hiroyuki</creator><creator>Sakai, Osamu</creator><creator>Itoh, Shinichi</creator><creator>Takano, Yoshihiko</creator><creator>Hase, Masashi</creator><creator>Kitazawa, Hideaki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4646-2580</orcidid><orcidid>https://orcid.org/0000-0002-8676-5586</orcidid><orcidid>https://orcid.org/0000-0002-7840-3008</orcidid><orcidid>https://orcid.org/0000-0001-6557-5508</orcidid></search><sort><creationdate>20230215</creationdate><title>Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction</title><author>Terada, Noriki ; Mamiya, Hiroaki ; Saito, Hiraku ; Nakajima, Taro ; Yamamoto, Takafumi D. ; Terashima, Kensei ; Takeya, Hiroyuki ; Sakai, Osamu ; Itoh, Shinichi ; Takano, Yoshihiko ; Hase, Masashi ; Kitazawa, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/119/2793</topic><topic>639/301/119/997</topic><topic>Chemistry and Materials Science</topic><topic>Crystals</topic><topic>Electric fields</topic><topic>Energy storage</topic><topic>Entropy</topic><topic>Inelastic scattering</topic><topic>Liquefaction</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metal ions</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Rare earth elements</topic><topic>Refrigeration</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terada, Noriki</creatorcontrib><creatorcontrib>Mamiya, Hiroaki</creatorcontrib><creatorcontrib>Saito, Hiraku</creatorcontrib><creatorcontrib>Nakajima, Taro</creatorcontrib><creatorcontrib>Yamamoto, Takafumi D.</creatorcontrib><creatorcontrib>Terashima, Kensei</creatorcontrib><creatorcontrib>Takeya, Hiroyuki</creatorcontrib><creatorcontrib>Sakai, Osamu</creatorcontrib><creatorcontrib>Itoh, Shinichi</creatorcontrib><creatorcontrib>Takano, Yoshihiko</creatorcontrib><creatorcontrib>Hase, Masashi</creatorcontrib><creatorcontrib>Kitazawa, Hideaki</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Communications materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terada, Noriki</au><au>Mamiya, Hiroaki</au><au>Saito, Hiraku</au><au>Nakajima, Taro</au><au>Yamamoto, Takafumi D.</au><au>Terashima, Kensei</au><au>Takeya, Hiroyuki</au><au>Sakai, Osamu</au><au>Itoh, Shinichi</au><au>Takano, Yoshihiko</au><au>Hase, Masashi</au><au>Kitazawa, Hideaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction</atitle><jtitle>Communications materials</jtitle><stitle>Commun Mater</stitle><date>2023-02-15</date><risdate>2023</risdate><volume>4</volume><issue>1</issue><spage>13</spage><epage>9</epage><pages>13-9</pages><artnum>13</artnum><issn>2662-4443</issn><eissn>2662-4443</eissn><abstract>In recent years, magnetic refrigeration has attracted considerable attention for hydrogen liquefaction. Most materials used for magnetic refrigeration contain heavy rare earth ions with complex crystalline electric field energy splittings, whose effect on the magnetic entropy change Δ S M has not been systematically studied. In particular, the theoretical upper limits of ∣Δ S M ∣ for general heavy earth cases are unknown. Here, we show that the crystalline electric field level schemes result in a large Δ S M for general heavy rare earth cases. We provide a specific example of the magnetic refrigeration material HoB 2 using inelastic neutron scattering experiments combined with mean-field calculations with crystal field splitting and exchange interactions. The relationship between Δ S M and crystal field parameters presented in this study can be useful for developing compounds with a large ∣Δ S M ∣ and advancing the design of magnetic refrigeration materials. Magnetic refrigeration materials containing rare-earth ions are promising for hydrogen liquefaction and energy storage applications. Here, the role of crystal-field level splitting on magnetic entropy change is systematically investigated, comparing mean-field calculations with neutron scattering experiments in HoB 2 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s43246-023-00340-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4646-2580</orcidid><orcidid>https://orcid.org/0000-0002-8676-5586</orcidid><orcidid>https://orcid.org/0000-0002-7840-3008</orcidid><orcidid>https://orcid.org/0000-0001-6557-5508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-4443
ispartof Communications materials, 2023-02, Vol.4 (1), p.13-9, Article 13
issn 2662-4443
2662-4443
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d6c9bb420f704c7083387b7b94257ac4
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/119/2793
639/301/119/997
Chemistry and Materials Science
Crystals
Electric fields
Energy storage
Entropy
Inelastic scattering
Liquefaction
Materials Science
Mathematical analysis
Metal ions
Neutron scattering
Neutrons
Rare earth elements
Refrigeration
Splitting
title Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20electric%20field%20level%20scheme%20leading%20to%20giant%20magnetocaloric%20effect%20for%20hydrogen%20liquefaction&rft.jtitle=Communications%20materials&rft.au=Terada,%20Noriki&rft.date=2023-02-15&rft.volume=4&rft.issue=1&rft.spage=13&rft.epage=9&rft.pages=13-9&rft.artnum=13&rft.issn=2662-4443&rft.eissn=2662-4443&rft_id=info:doi/10.1038/s43246-023-00340-z&rft_dat=%3Cproquest_doaj_%3E2776892488%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2776892488&rft_id=info:pmid/&rfr_iscdi=true