Loading…
Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction
In recent years, magnetic refrigeration has attracted considerable attention for hydrogen liquefaction. Most materials used for magnetic refrigeration contain heavy rare earth ions with complex crystalline electric field energy splittings, whose effect on the magnetic entropy change Δ S M has not be...
Saved in:
Published in: | Communications materials 2023-02, Vol.4 (1), p.13-9, Article 13 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 13 |
container_title | Communications materials |
container_volume | 4 |
creator | Terada, Noriki Mamiya, Hiroaki Saito, Hiraku Nakajima, Taro Yamamoto, Takafumi D. Terashima, Kensei Takeya, Hiroyuki Sakai, Osamu Itoh, Shinichi Takano, Yoshihiko Hase, Masashi Kitazawa, Hideaki |
description | In recent years, magnetic refrigeration has attracted considerable attention for hydrogen liquefaction. Most materials used for magnetic refrigeration contain heavy rare earth ions with complex crystalline electric field energy splittings, whose effect on the magnetic entropy change Δ
S
M
has not been systematically studied. In particular, the theoretical upper limits of ∣Δ
S
M
∣ for general heavy earth cases are unknown. Here, we show that the crystalline electric field level schemes result in a large Δ
S
M
for general heavy rare earth cases. We provide a specific example of the magnetic refrigeration material HoB
2
using inelastic neutron scattering experiments combined with mean-field calculations with crystal field splitting and exchange interactions. The relationship between Δ
S
M
and crystal field parameters presented in this study can be useful for developing compounds with a large ∣Δ
S
M
∣ and advancing the design of magnetic refrigeration materials.
Magnetic refrigeration materials containing rare-earth ions are promising for hydrogen liquefaction and energy storage applications. Here, the role of crystal-field level splitting on magnetic entropy change is systematically investigated, comparing mean-field calculations with neutron scattering experiments in HoB
2
. |
doi_str_mv | 10.1038/s43246-023-00340-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d6c9bb420f704c7083387b7b94257ac4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d6c9bb420f704c7083387b7b94257ac4</doaj_id><sourcerecordid>2776892488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3</originalsourceid><addsrcrecordid>eNp9kVtrFTEUhQdRsNT-AZ8CPo_uXGaSeZSDl0LBF30OuexMc8iZ1CQVTn-9aaeoTz7lwvrW3os1DG8pvKfA1YcqOBPzCIyPAFzA-PBiuGDzzEYhBH_5z_31cFXrEQDYROks4GLwh3KuzSSCCV0r0ZEQMXmS8BcmUt0tnrA_jI_bSlomazRbIyezbtiyMyk_IhhCh0nIhdyefckrbiTFn_cYjGsxb2-GV8GkilfP5-Xw4_On74ev4823L9eHjzejE8vURitgMoBeCRA8iABAPbWGUrkocAa45ajQMaYW6i3OYHvciS0g6SJQWn45XO--PpujvivxZMpZZxP100cuqzalRZdQ-9kt1goGQYJwEhTnSlppF8EmaZzoXu92r7uSe5La9DHfl62vr5mUs1qYUKqr2K5yJddaMPyZSkE_lqP3cnQvRz-Vox86xHeodvG2Yvlr_R_qN0Zlkf4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776892488</pqid></control><display><type>article</type><title>Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Terada, Noriki ; Mamiya, Hiroaki ; Saito, Hiraku ; Nakajima, Taro ; Yamamoto, Takafumi D. ; Terashima, Kensei ; Takeya, Hiroyuki ; Sakai, Osamu ; Itoh, Shinichi ; Takano, Yoshihiko ; Hase, Masashi ; Kitazawa, Hideaki</creator><creatorcontrib>Terada, Noriki ; Mamiya, Hiroaki ; Saito, Hiraku ; Nakajima, Taro ; Yamamoto, Takafumi D. ; Terashima, Kensei ; Takeya, Hiroyuki ; Sakai, Osamu ; Itoh, Shinichi ; Takano, Yoshihiko ; Hase, Masashi ; Kitazawa, Hideaki</creatorcontrib><description>In recent years, magnetic refrigeration has attracted considerable attention for hydrogen liquefaction. Most materials used for magnetic refrigeration contain heavy rare earth ions with complex crystalline electric field energy splittings, whose effect on the magnetic entropy change Δ
S
M
has not been systematically studied. In particular, the theoretical upper limits of ∣Δ
S
M
∣ for general heavy earth cases are unknown. Here, we show that the crystalline electric field level schemes result in a large Δ
S
M
for general heavy rare earth cases. We provide a specific example of the magnetic refrigeration material HoB
2
using inelastic neutron scattering experiments combined with mean-field calculations with crystal field splitting and exchange interactions. The relationship between Δ
S
M
and crystal field parameters presented in this study can be useful for developing compounds with a large ∣Δ
S
M
∣ and advancing the design of magnetic refrigeration materials.
Magnetic refrigeration materials containing rare-earth ions are promising for hydrogen liquefaction and energy storage applications. Here, the role of crystal-field level splitting on magnetic entropy change is systematically investigated, comparing mean-field calculations with neutron scattering experiments in HoB
2
.</description><identifier>ISSN: 2662-4443</identifier><identifier>EISSN: 2662-4443</identifier><identifier>DOI: 10.1038/s43246-023-00340-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2793 ; 639/301/119/997 ; Chemistry and Materials Science ; Crystals ; Electric fields ; Energy storage ; Entropy ; Inelastic scattering ; Liquefaction ; Materials Science ; Mathematical analysis ; Metal ions ; Neutron scattering ; Neutrons ; Rare earth elements ; Refrigeration ; Splitting</subject><ispartof>Communications materials, 2023-02, Vol.4 (1), p.13-9, Article 13</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3</citedby><cites>FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3</cites><orcidid>0000-0002-4646-2580 ; 0000-0002-8676-5586 ; 0000-0002-7840-3008 ; 0000-0001-6557-5508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2776892488?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Terada, Noriki</creatorcontrib><creatorcontrib>Mamiya, Hiroaki</creatorcontrib><creatorcontrib>Saito, Hiraku</creatorcontrib><creatorcontrib>Nakajima, Taro</creatorcontrib><creatorcontrib>Yamamoto, Takafumi D.</creatorcontrib><creatorcontrib>Terashima, Kensei</creatorcontrib><creatorcontrib>Takeya, Hiroyuki</creatorcontrib><creatorcontrib>Sakai, Osamu</creatorcontrib><creatorcontrib>Itoh, Shinichi</creatorcontrib><creatorcontrib>Takano, Yoshihiko</creatorcontrib><creatorcontrib>Hase, Masashi</creatorcontrib><creatorcontrib>Kitazawa, Hideaki</creatorcontrib><title>Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction</title><title>Communications materials</title><addtitle>Commun Mater</addtitle><description>In recent years, magnetic refrigeration has attracted considerable attention for hydrogen liquefaction. Most materials used for magnetic refrigeration contain heavy rare earth ions with complex crystalline electric field energy splittings, whose effect on the magnetic entropy change Δ
S
M
has not been systematically studied. In particular, the theoretical upper limits of ∣Δ
S
M
∣ for general heavy earth cases are unknown. Here, we show that the crystalline electric field level schemes result in a large Δ
S
M
for general heavy rare earth cases. We provide a specific example of the magnetic refrigeration material HoB
2
using inelastic neutron scattering experiments combined with mean-field calculations with crystal field splitting and exchange interactions. The relationship between Δ
S
M
and crystal field parameters presented in this study can be useful for developing compounds with a large ∣Δ
S
M
∣ and advancing the design of magnetic refrigeration materials.
Magnetic refrigeration materials containing rare-earth ions are promising for hydrogen liquefaction and energy storage applications. Here, the role of crystal-field level splitting on magnetic entropy change is systematically investigated, comparing mean-field calculations with neutron scattering experiments in HoB
2
.</description><subject>639/301/119/2793</subject><subject>639/301/119/997</subject><subject>Chemistry and Materials Science</subject><subject>Crystals</subject><subject>Electric fields</subject><subject>Energy storage</subject><subject>Entropy</subject><subject>Inelastic scattering</subject><subject>Liquefaction</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metal ions</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Rare earth elements</subject><subject>Refrigeration</subject><subject>Splitting</subject><issn>2662-4443</issn><issn>2662-4443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kVtrFTEUhQdRsNT-AZ8CPo_uXGaSeZSDl0LBF30OuexMc8iZ1CQVTn-9aaeoTz7lwvrW3os1DG8pvKfA1YcqOBPzCIyPAFzA-PBiuGDzzEYhBH_5z_31cFXrEQDYROks4GLwh3KuzSSCCV0r0ZEQMXmS8BcmUt0tnrA_jI_bSlomazRbIyezbtiyMyk_IhhCh0nIhdyefckrbiTFn_cYjGsxb2-GV8GkilfP5-Xw4_On74ev4823L9eHjzejE8vURitgMoBeCRA8iABAPbWGUrkocAa45ajQMaYW6i3OYHvciS0g6SJQWn45XO--PpujvivxZMpZZxP100cuqzalRZdQ-9kt1goGQYJwEhTnSlppF8EmaZzoXu92r7uSe5La9DHfl62vr5mUs1qYUKqr2K5yJddaMPyZSkE_lqP3cnQvRz-Vox86xHeodvG2Yvlr_R_qN0Zlkf4</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Terada, Noriki</creator><creator>Mamiya, Hiroaki</creator><creator>Saito, Hiraku</creator><creator>Nakajima, Taro</creator><creator>Yamamoto, Takafumi D.</creator><creator>Terashima, Kensei</creator><creator>Takeya, Hiroyuki</creator><creator>Sakai, Osamu</creator><creator>Itoh, Shinichi</creator><creator>Takano, Yoshihiko</creator><creator>Hase, Masashi</creator><creator>Kitazawa, Hideaki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4646-2580</orcidid><orcidid>https://orcid.org/0000-0002-8676-5586</orcidid><orcidid>https://orcid.org/0000-0002-7840-3008</orcidid><orcidid>https://orcid.org/0000-0001-6557-5508</orcidid></search><sort><creationdate>20230215</creationdate><title>Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction</title><author>Terada, Noriki ; Mamiya, Hiroaki ; Saito, Hiraku ; Nakajima, Taro ; Yamamoto, Takafumi D. ; Terashima, Kensei ; Takeya, Hiroyuki ; Sakai, Osamu ; Itoh, Shinichi ; Takano, Yoshihiko ; Hase, Masashi ; Kitazawa, Hideaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/119/2793</topic><topic>639/301/119/997</topic><topic>Chemistry and Materials Science</topic><topic>Crystals</topic><topic>Electric fields</topic><topic>Energy storage</topic><topic>Entropy</topic><topic>Inelastic scattering</topic><topic>Liquefaction</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metal ions</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Rare earth elements</topic><topic>Refrigeration</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terada, Noriki</creatorcontrib><creatorcontrib>Mamiya, Hiroaki</creatorcontrib><creatorcontrib>Saito, Hiraku</creatorcontrib><creatorcontrib>Nakajima, Taro</creatorcontrib><creatorcontrib>Yamamoto, Takafumi D.</creatorcontrib><creatorcontrib>Terashima, Kensei</creatorcontrib><creatorcontrib>Takeya, Hiroyuki</creatorcontrib><creatorcontrib>Sakai, Osamu</creatorcontrib><creatorcontrib>Itoh, Shinichi</creatorcontrib><creatorcontrib>Takano, Yoshihiko</creatorcontrib><creatorcontrib>Hase, Masashi</creatorcontrib><creatorcontrib>Kitazawa, Hideaki</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Communications materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terada, Noriki</au><au>Mamiya, Hiroaki</au><au>Saito, Hiraku</au><au>Nakajima, Taro</au><au>Yamamoto, Takafumi D.</au><au>Terashima, Kensei</au><au>Takeya, Hiroyuki</au><au>Sakai, Osamu</au><au>Itoh, Shinichi</au><au>Takano, Yoshihiko</au><au>Hase, Masashi</au><au>Kitazawa, Hideaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction</atitle><jtitle>Communications materials</jtitle><stitle>Commun Mater</stitle><date>2023-02-15</date><risdate>2023</risdate><volume>4</volume><issue>1</issue><spage>13</spage><epage>9</epage><pages>13-9</pages><artnum>13</artnum><issn>2662-4443</issn><eissn>2662-4443</eissn><abstract>In recent years, magnetic refrigeration has attracted considerable attention for hydrogen liquefaction. Most materials used for magnetic refrigeration contain heavy rare earth ions with complex crystalline electric field energy splittings, whose effect on the magnetic entropy change Δ
S
M
has not been systematically studied. In particular, the theoretical upper limits of ∣Δ
S
M
∣ for general heavy earth cases are unknown. Here, we show that the crystalline electric field level schemes result in a large Δ
S
M
for general heavy rare earth cases. We provide a specific example of the magnetic refrigeration material HoB
2
using inelastic neutron scattering experiments combined with mean-field calculations with crystal field splitting and exchange interactions. The relationship between Δ
S
M
and crystal field parameters presented in this study can be useful for developing compounds with a large ∣Δ
S
M
∣ and advancing the design of magnetic refrigeration materials.
Magnetic refrigeration materials containing rare-earth ions are promising for hydrogen liquefaction and energy storage applications. Here, the role of crystal-field level splitting on magnetic entropy change is systematically investigated, comparing mean-field calculations with neutron scattering experiments in HoB
2
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s43246-023-00340-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4646-2580</orcidid><orcidid>https://orcid.org/0000-0002-8676-5586</orcidid><orcidid>https://orcid.org/0000-0002-7840-3008</orcidid><orcidid>https://orcid.org/0000-0001-6557-5508</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-4443 |
ispartof | Communications materials, 2023-02, Vol.4 (1), p.13-9, Article 13 |
issn | 2662-4443 2662-4443 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d6c9bb420f704c7083387b7b94257ac4 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/119/2793 639/301/119/997 Chemistry and Materials Science Crystals Electric fields Energy storage Entropy Inelastic scattering Liquefaction Materials Science Mathematical analysis Metal ions Neutron scattering Neutrons Rare earth elements Refrigeration Splitting |
title | Crystal electric field level scheme leading to giant magnetocaloric effect for hydrogen liquefaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20electric%20field%20level%20scheme%20leading%20to%20giant%20magnetocaloric%20effect%20for%20hydrogen%20liquefaction&rft.jtitle=Communications%20materials&rft.au=Terada,%20Noriki&rft.date=2023-02-15&rft.volume=4&rft.issue=1&rft.spage=13&rft.epage=9&rft.pages=13-9&rft.artnum=13&rft.issn=2662-4443&rft.eissn=2662-4443&rft_id=info:doi/10.1038/s43246-023-00340-z&rft_dat=%3Cproquest_doaj_%3E2776892488%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-b405a0ed84043f4f001d1ba117980ca03b3e8ec22891dbe60b00352907194e7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2776892488&rft_id=info:pmid/&rfr_iscdi=true |