Loading…
Influence of buoyancy and viscous dissipation effects on 3D magneto hydrodynamic viscous hybrid nano fluid (MgO−TiO2) under slip conditions
Owing to its bounteous applications in engineering and advanced industrial processes magnetized hybrid Nano fluid influenced by suspended Nano-size particles got unusual consideration. The prime focus of current study rely on the meaningful investigation of the proposed phenomena with the utilizatio...
Saved in:
Published in: | Case studies in thermal engineering 2023-09, Vol.49, p.103281, Article 103281 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Owing to its bounteous applications in engineering and advanced industrial processes magnetized hybrid Nano fluid influenced by suspended Nano-size particles got unusual consideration. The prime focus of current study rely on the meaningful investigation of the proposed phenomena with the utilization of buoyancy and viscous dissipation influence in the hybrid fluid. Numerical approach appertaining to three-dimensional hybrid Nano fluid flow configured by horizontal stretched surface is developed in the contemporary study. Magneto hydrodynamic viscous flow demeanor of hybrid traditionally water-based Nano fluid is contemplated in current report. Heat transmission phenomenon is taken into consideration on account of suspended Nano-scale size particles namely Magnesium-oxide (MgO) and Titanium-oxide (TiO2). Furthermore, Viscous dissipation along with thermal radiation impacts are also opted for the optimization of energy. Velocity profile along x-component and y-component is observed under buoyancy effects. Cartesian coordinates system have been accounted to mathematically model the proffered nonlinear system of PDEs by invoking appropriate similarity approach. An esteemed and prominent Runge-Kutta (4th - order) established on shooting technique is employed for the determination of velocity as well as temperature distributions. Multifarious parameters influence is sketched graphically. Velocity profile along horizontal components demonstrates the strengthening behavior for the growing values of magnetic parameter M and also buoyancy parameter λb while demonstrates depreciating behavior for the enhanced values of slip parameter K and also rotation parameter λ. Moreover, velocity profile along the vertical components is observed under the consequences of varying values of magnetic parameter M, rotation parameter λ, and slip parameter K and for buoyancy parameter λb.We noticed that horizontal component depicts enhanced demeanor for magnetic parameter M, slip parameter K whilst decaying demeanor for the upshot vales of rotation parameter λ. Local Skin-friction and also Nusselt number influence is reported via tables and found in excellent accuracy. The final outcomes will be validated numerically by aiding suitable techniques (R–K 4th order based Shooting Method). Our findings will be validated through graphs. This research provides significant field of study and will play an extensive role in field of fluid mechanics. |
---|---|
ISSN: | 2214-157X 2214-157X |
DOI: | 10.1016/j.csite.2023.103281 |