Loading…
Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review
This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic...
Saved in:
Published in: | Journal of ophthalmology 2020-11, Vol.2020 (2020), p.1-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3 |
container_end_page | 11 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Journal of ophthalmology |
container_volume | 2020 |
creator | Vaghefi, Ehsan Phillips, Andelka M. Squirrell, David Chu, Aan |
description | This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic databases (Embase, MEDLINE, Scopus, PubMed, and the Cochrane Library) returned 747 unique records on 20 December 2019. Predetermined inclusion and exclusion criteria were applied to the search results, resulting in 15 highest-quality publications. A manual search through the reference lists of relevant review articles found from the database search was conducted, yielding no additional records. A validation dataset of the trained deep learning algorithms was used for creating a set of optimal properties for an ideal diabetic retinopathy classification algorithm. Potential limitations to the clinical implementation of such systems were identified as lack of generalizability, limited screening scope, and data sovereignty issues. It is concluded that deep learning algorithms in the context of diabetic retinopathy screening have reported impressive results. Despite this, the potential sources of limitations in such systems must be evaluated carefully. An ideal deep learning algorithm should be clinic-, clinician-, and camera-agnostic; complying with the local regulation for data sovereignty, storage, privacy, and reporting; whilst requiring minimum human input. |
doi_str_mv | 10.1155/2020/8841927 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d70d82b9f91e4e6ea973a5cb5e020f0b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697110961</galeid><doaj_id>oai_doaj_org_article_d70d82b9f91e4e6ea973a5cb5e020f0b</doaj_id><sourcerecordid>A697110961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3</originalsourceid><addsrcrecordid>eNqFktFrFDEQxhdRsNS--SwBwRe9Ntkku1nfjrZq4UBoFXwLs9nJXY675EyylvvvzblHa0EwgUwYfvPlSzJV9ZrRc8akvKhpTS-UEqyr22fVSU07OqNUqucPe_HjZXWW0pqWwZmQkp5U_jol9NnBJpFgCZDb0I8pkyvEHVkgRO_8ktztU8YtsSGSKwc9ZmfIbVl92EFe7cmdiYgH8iOZH2E4MAuXMUIeIxb8l8P7V9ULW47Cs2M8rb5_uv52-WW2-Pr55nK-mBlZizyzppdWyQ6xaVorBVcgB84aIzthRS1ayoFjT7nFAftemLbnYCxaMIpK0fPT6mbSHQKs9S66LcS9DuD0n0SISw2xONygHlo6qLrvbMdQYIPQtRxkMYDlQS09aL2dtHYx_BwxZb0OY_TFvq5FI2vOVUMfqSUUUedtyBHM1iWj503XMka7hhXq_B9UmQNunQkerSv5JwXv_ipYIWzyKoXNmF3w6Sn4YQJNDClFtA-3ZlQfGkQfGkQfG6Tg7yd85fwA9-5_9JuJLv9apOGRZqpTlPPfUQfCmw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465233860</pqid></control><display><type>article</type><title>Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Vaghefi, Ehsan ; Phillips, Andelka M. ; Squirrell, David ; Chu, Aan</creator><contributor>Costagliola, Ciro ; Ciro Costagliola</contributor><creatorcontrib>Vaghefi, Ehsan ; Phillips, Andelka M. ; Squirrell, David ; Chu, Aan ; Costagliola, Ciro ; Ciro Costagliola</creatorcontrib><description>This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic databases (Embase, MEDLINE, Scopus, PubMed, and the Cochrane Library) returned 747 unique records on 20 December 2019. Predetermined inclusion and exclusion criteria were applied to the search results, resulting in 15 highest-quality publications. A manual search through the reference lists of relevant review articles found from the database search was conducted, yielding no additional records. A validation dataset of the trained deep learning algorithms was used for creating a set of optimal properties for an ideal diabetic retinopathy classification algorithm. Potential limitations to the clinical implementation of such systems were identified as lack of generalizability, limited screening scope, and data sovereignty issues. It is concluded that deep learning algorithms in the context of diabetic retinopathy screening have reported impressive results. Despite this, the potential sources of limitations in such systems must be evaluated carefully. An ideal deep learning algorithm should be clinic-, clinician-, and camera-agnostic; complying with the local regulation for data sovereignty, storage, privacy, and reporting; whilst requiring minimum human input.</description><identifier>ISSN: 2090-004X</identifier><identifier>EISSN: 2090-0058</identifier><identifier>DOI: 10.1155/2020/8841927</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial intelligence ; Data mining ; Database searching ; Datasets ; Diabetic retinopathy ; Internet/Web search services ; Neural networks ; Online searching</subject><ispartof>Journal of ophthalmology, 2020-11, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Aan Chu et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Aan Chu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3</citedby><cites>FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3</cites><orcidid>0000-0002-9482-3168 ; 0000-0003-1945-3547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2465233860/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2465233860?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Costagliola, Ciro</contributor><contributor>Ciro Costagliola</contributor><creatorcontrib>Vaghefi, Ehsan</creatorcontrib><creatorcontrib>Phillips, Andelka M.</creatorcontrib><creatorcontrib>Squirrell, David</creatorcontrib><creatorcontrib>Chu, Aan</creatorcontrib><title>Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review</title><title>Journal of ophthalmology</title><description>This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic databases (Embase, MEDLINE, Scopus, PubMed, and the Cochrane Library) returned 747 unique records on 20 December 2019. Predetermined inclusion and exclusion criteria were applied to the search results, resulting in 15 highest-quality publications. A manual search through the reference lists of relevant review articles found from the database search was conducted, yielding no additional records. A validation dataset of the trained deep learning algorithms was used for creating a set of optimal properties for an ideal diabetic retinopathy classification algorithm. Potential limitations to the clinical implementation of such systems were identified as lack of generalizability, limited screening scope, and data sovereignty issues. It is concluded that deep learning algorithms in the context of diabetic retinopathy screening have reported impressive results. Despite this, the potential sources of limitations in such systems must be evaluated carefully. An ideal deep learning algorithm should be clinic-, clinician-, and camera-agnostic; complying with the local regulation for data sovereignty, storage, privacy, and reporting; whilst requiring minimum human input.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Data mining</subject><subject>Database searching</subject><subject>Datasets</subject><subject>Diabetic retinopathy</subject><subject>Internet/Web search services</subject><subject>Neural networks</subject><subject>Online searching</subject><issn>2090-004X</issn><issn>2090-0058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFktFrFDEQxhdRsNS--SwBwRe9Ntkku1nfjrZq4UBoFXwLs9nJXY675EyylvvvzblHa0EwgUwYfvPlSzJV9ZrRc8akvKhpTS-UEqyr22fVSU07OqNUqucPe_HjZXWW0pqWwZmQkp5U_jol9NnBJpFgCZDb0I8pkyvEHVkgRO_8ktztU8YtsSGSKwc9ZmfIbVl92EFe7cmdiYgH8iOZH2E4MAuXMUIeIxb8l8P7V9ULW47Cs2M8rb5_uv52-WW2-Pr55nK-mBlZizyzppdWyQ6xaVorBVcgB84aIzthRS1ayoFjT7nFAftemLbnYCxaMIpK0fPT6mbSHQKs9S66LcS9DuD0n0SISw2xONygHlo6qLrvbMdQYIPQtRxkMYDlQS09aL2dtHYx_BwxZb0OY_TFvq5FI2vOVUMfqSUUUedtyBHM1iWj503XMka7hhXq_B9UmQNunQkerSv5JwXv_ipYIWzyKoXNmF3w6Sn4YQJNDClFtA-3ZlQfGkQfGkQfG6Tg7yd85fwA9-5_9JuJLv9apOGRZqpTlPPfUQfCmw</recordid><startdate>20201116</startdate><enddate>20201116</enddate><creator>Vaghefi, Ehsan</creator><creator>Phillips, Andelka M.</creator><creator>Squirrell, David</creator><creator>Chu, Aan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9482-3168</orcidid><orcidid>https://orcid.org/0000-0003-1945-3547</orcidid></search><sort><creationdate>20201116</creationdate><title>Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review</title><author>Vaghefi, Ehsan ; Phillips, Andelka M. ; Squirrell, David ; Chu, Aan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Data mining</topic><topic>Database searching</topic><topic>Datasets</topic><topic>Diabetic retinopathy</topic><topic>Internet/Web search services</topic><topic>Neural networks</topic><topic>Online searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaghefi, Ehsan</creatorcontrib><creatorcontrib>Phillips, Andelka M.</creatorcontrib><creatorcontrib>Squirrell, David</creatorcontrib><creatorcontrib>Chu, Aan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of ophthalmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaghefi, Ehsan</au><au>Phillips, Andelka M.</au><au>Squirrell, David</au><au>Chu, Aan</au><au>Costagliola, Ciro</au><au>Ciro Costagliola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review</atitle><jtitle>Journal of ophthalmology</jtitle><date>2020-11-16</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2090-004X</issn><eissn>2090-0058</eissn><abstract>This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic databases (Embase, MEDLINE, Scopus, PubMed, and the Cochrane Library) returned 747 unique records on 20 December 2019. Predetermined inclusion and exclusion criteria were applied to the search results, resulting in 15 highest-quality publications. A manual search through the reference lists of relevant review articles found from the database search was conducted, yielding no additional records. A validation dataset of the trained deep learning algorithms was used for creating a set of optimal properties for an ideal diabetic retinopathy classification algorithm. Potential limitations to the clinical implementation of such systems were identified as lack of generalizability, limited screening scope, and data sovereignty issues. It is concluded that deep learning algorithms in the context of diabetic retinopathy screening have reported impressive results. Despite this, the potential sources of limitations in such systems must be evaluated carefully. An ideal deep learning algorithm should be clinic-, clinician-, and camera-agnostic; complying with the local regulation for data sovereignty, storage, privacy, and reporting; whilst requiring minimum human input.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8841927</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9482-3168</orcidid><orcidid>https://orcid.org/0000-0003-1945-3547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2090-004X |
ispartof | Journal of ophthalmology, 2020-11, Vol.2020 (2020), p.1-11 |
issn | 2090-004X 2090-0058 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d70d82b9f91e4e6ea973a5cb5e020f0b |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database; PubMed Central |
subjects | Algorithms Artificial intelligence Data mining Database searching Datasets Diabetic retinopathy Internet/Web search services Neural networks Online searching |
title | Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essentials%20of%20a%20Robust%20Deep%20Learning%20System%20for%20Diabetic%20Retinopathy%20Screening:%20A%20Systematic%20Literature%20Review&rft.jtitle=Journal%20of%20ophthalmology&rft.au=Vaghefi,%20Ehsan&rft.date=2020-11-16&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2090-004X&rft.eissn=2090-0058&rft_id=info:doi/10.1155/2020/8841927&rft_dat=%3Cgale_doaj_%3EA697110961%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465233860&rft_id=info:pmid/&rft_galeid=A697110961&rfr_iscdi=true |