Loading…

Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review

This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ophthalmology 2020-11, Vol.2020 (2020), p.1-11
Main Authors: Vaghefi, Ehsan, Phillips, Andelka M., Squirrell, David, Chu, Aan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3
cites cdi_FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3
container_end_page 11
container_issue 2020
container_start_page 1
container_title Journal of ophthalmology
container_volume 2020
creator Vaghefi, Ehsan
Phillips, Andelka M.
Squirrell, David
Chu, Aan
description This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic databases (Embase, MEDLINE, Scopus, PubMed, and the Cochrane Library) returned 747 unique records on 20 December 2019. Predetermined inclusion and exclusion criteria were applied to the search results, resulting in 15 highest-quality publications. A manual search through the reference lists of relevant review articles found from the database search was conducted, yielding no additional records. A validation dataset of the trained deep learning algorithms was used for creating a set of optimal properties for an ideal diabetic retinopathy classification algorithm. Potential limitations to the clinical implementation of such systems were identified as lack of generalizability, limited screening scope, and data sovereignty issues. It is concluded that deep learning algorithms in the context of diabetic retinopathy screening have reported impressive results. Despite this, the potential sources of limitations in such systems must be evaluated carefully. An ideal deep learning algorithm should be clinic-, clinician-, and camera-agnostic; complying with the local regulation for data sovereignty, storage, privacy, and reporting; whilst requiring minimum human input.
doi_str_mv 10.1155/2020/8841927
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d70d82b9f91e4e6ea973a5cb5e020f0b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697110961</galeid><doaj_id>oai_doaj_org_article_d70d82b9f91e4e6ea973a5cb5e020f0b</doaj_id><sourcerecordid>A697110961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3</originalsourceid><addsrcrecordid>eNqFktFrFDEQxhdRsNS--SwBwRe9Ntkku1nfjrZq4UBoFXwLs9nJXY675EyylvvvzblHa0EwgUwYfvPlSzJV9ZrRc8akvKhpTS-UEqyr22fVSU07OqNUqucPe_HjZXWW0pqWwZmQkp5U_jol9NnBJpFgCZDb0I8pkyvEHVkgRO_8ktztU8YtsSGSKwc9ZmfIbVl92EFe7cmdiYgH8iOZH2E4MAuXMUIeIxb8l8P7V9ULW47Cs2M8rb5_uv52-WW2-Pr55nK-mBlZizyzppdWyQ6xaVorBVcgB84aIzthRS1ayoFjT7nFAftemLbnYCxaMIpK0fPT6mbSHQKs9S66LcS9DuD0n0SISw2xONygHlo6qLrvbMdQYIPQtRxkMYDlQS09aL2dtHYx_BwxZb0OY_TFvq5FI2vOVUMfqSUUUedtyBHM1iWj503XMka7hhXq_B9UmQNunQkerSv5JwXv_ipYIWzyKoXNmF3w6Sn4YQJNDClFtA-3ZlQfGkQfGkQfG6Tg7yd85fwA9-5_9JuJLv9apOGRZqpTlPPfUQfCmw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465233860</pqid></control><display><type>article</type><title>Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Vaghefi, Ehsan ; Phillips, Andelka M. ; Squirrell, David ; Chu, Aan</creator><contributor>Costagliola, Ciro ; Ciro Costagliola</contributor><creatorcontrib>Vaghefi, Ehsan ; Phillips, Andelka M. ; Squirrell, David ; Chu, Aan ; Costagliola, Ciro ; Ciro Costagliola</creatorcontrib><description>This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic databases (Embase, MEDLINE, Scopus, PubMed, and the Cochrane Library) returned 747 unique records on 20 December 2019. Predetermined inclusion and exclusion criteria were applied to the search results, resulting in 15 highest-quality publications. A manual search through the reference lists of relevant review articles found from the database search was conducted, yielding no additional records. A validation dataset of the trained deep learning algorithms was used for creating a set of optimal properties for an ideal diabetic retinopathy classification algorithm. Potential limitations to the clinical implementation of such systems were identified as lack of generalizability, limited screening scope, and data sovereignty issues. It is concluded that deep learning algorithms in the context of diabetic retinopathy screening have reported impressive results. Despite this, the potential sources of limitations in such systems must be evaluated carefully. An ideal deep learning algorithm should be clinic-, clinician-, and camera-agnostic; complying with the local regulation for data sovereignty, storage, privacy, and reporting; whilst requiring minimum human input.</description><identifier>ISSN: 2090-004X</identifier><identifier>EISSN: 2090-0058</identifier><identifier>DOI: 10.1155/2020/8841927</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial intelligence ; Data mining ; Database searching ; Datasets ; Diabetic retinopathy ; Internet/Web search services ; Neural networks ; Online searching</subject><ispartof>Journal of ophthalmology, 2020-11, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Aan Chu et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Aan Chu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3</citedby><cites>FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3</cites><orcidid>0000-0002-9482-3168 ; 0000-0003-1945-3547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2465233860/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2465233860?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Costagliola, Ciro</contributor><contributor>Ciro Costagliola</contributor><creatorcontrib>Vaghefi, Ehsan</creatorcontrib><creatorcontrib>Phillips, Andelka M.</creatorcontrib><creatorcontrib>Squirrell, David</creatorcontrib><creatorcontrib>Chu, Aan</creatorcontrib><title>Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review</title><title>Journal of ophthalmology</title><description>This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic databases (Embase, MEDLINE, Scopus, PubMed, and the Cochrane Library) returned 747 unique records on 20 December 2019. Predetermined inclusion and exclusion criteria were applied to the search results, resulting in 15 highest-quality publications. A manual search through the reference lists of relevant review articles found from the database search was conducted, yielding no additional records. A validation dataset of the trained deep learning algorithms was used for creating a set of optimal properties for an ideal diabetic retinopathy classification algorithm. Potential limitations to the clinical implementation of such systems were identified as lack of generalizability, limited screening scope, and data sovereignty issues. It is concluded that deep learning algorithms in the context of diabetic retinopathy screening have reported impressive results. Despite this, the potential sources of limitations in such systems must be evaluated carefully. An ideal deep learning algorithm should be clinic-, clinician-, and camera-agnostic; complying with the local regulation for data sovereignty, storage, privacy, and reporting; whilst requiring minimum human input.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Data mining</subject><subject>Database searching</subject><subject>Datasets</subject><subject>Diabetic retinopathy</subject><subject>Internet/Web search services</subject><subject>Neural networks</subject><subject>Online searching</subject><issn>2090-004X</issn><issn>2090-0058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFktFrFDEQxhdRsNS--SwBwRe9Ntkku1nfjrZq4UBoFXwLs9nJXY675EyylvvvzblHa0EwgUwYfvPlSzJV9ZrRc8akvKhpTS-UEqyr22fVSU07OqNUqucPe_HjZXWW0pqWwZmQkp5U_jol9NnBJpFgCZDb0I8pkyvEHVkgRO_8ktztU8YtsSGSKwc9ZmfIbVl92EFe7cmdiYgH8iOZH2E4MAuXMUIeIxb8l8P7V9ULW47Cs2M8rb5_uv52-WW2-Pr55nK-mBlZizyzppdWyQ6xaVorBVcgB84aIzthRS1ayoFjT7nFAftemLbnYCxaMIpK0fPT6mbSHQKs9S66LcS9DuD0n0SISw2xONygHlo6qLrvbMdQYIPQtRxkMYDlQS09aL2dtHYx_BwxZb0OY_TFvq5FI2vOVUMfqSUUUedtyBHM1iWj503XMka7hhXq_B9UmQNunQkerSv5JwXv_ipYIWzyKoXNmF3w6Sn4YQJNDClFtA-3ZlQfGkQfGkQfG6Tg7yd85fwA9-5_9JuJLv9apOGRZqpTlPPfUQfCmw</recordid><startdate>20201116</startdate><enddate>20201116</enddate><creator>Vaghefi, Ehsan</creator><creator>Phillips, Andelka M.</creator><creator>Squirrell, David</creator><creator>Chu, Aan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9482-3168</orcidid><orcidid>https://orcid.org/0000-0003-1945-3547</orcidid></search><sort><creationdate>20201116</creationdate><title>Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review</title><author>Vaghefi, Ehsan ; Phillips, Andelka M. ; Squirrell, David ; Chu, Aan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Data mining</topic><topic>Database searching</topic><topic>Datasets</topic><topic>Diabetic retinopathy</topic><topic>Internet/Web search services</topic><topic>Neural networks</topic><topic>Online searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaghefi, Ehsan</creatorcontrib><creatorcontrib>Phillips, Andelka M.</creatorcontrib><creatorcontrib>Squirrell, David</creatorcontrib><creatorcontrib>Chu, Aan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of ophthalmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaghefi, Ehsan</au><au>Phillips, Andelka M.</au><au>Squirrell, David</au><au>Chu, Aan</au><au>Costagliola, Ciro</au><au>Ciro Costagliola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review</atitle><jtitle>Journal of ophthalmology</jtitle><date>2020-11-16</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2090-004X</issn><eissn>2090-0058</eissn><abstract>This systematic review was performed to identify the specifics of an optimal diabetic retinopathy deep learning algorithm, by identifying the best exemplar research studies of the field, whilst highlighting potential barriers to clinical implementation of such an algorithm. Searching five electronic databases (Embase, MEDLINE, Scopus, PubMed, and the Cochrane Library) returned 747 unique records on 20 December 2019. Predetermined inclusion and exclusion criteria were applied to the search results, resulting in 15 highest-quality publications. A manual search through the reference lists of relevant review articles found from the database search was conducted, yielding no additional records. A validation dataset of the trained deep learning algorithms was used for creating a set of optimal properties for an ideal diabetic retinopathy classification algorithm. Potential limitations to the clinical implementation of such systems were identified as lack of generalizability, limited screening scope, and data sovereignty issues. It is concluded that deep learning algorithms in the context of diabetic retinopathy screening have reported impressive results. Despite this, the potential sources of limitations in such systems must be evaluated carefully. An ideal deep learning algorithm should be clinic-, clinician-, and camera-agnostic; complying with the local regulation for data sovereignty, storage, privacy, and reporting; whilst requiring minimum human input.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8841927</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9482-3168</orcidid><orcidid>https://orcid.org/0000-0003-1945-3547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-004X
ispartof Journal of ophthalmology, 2020-11, Vol.2020 (2020), p.1-11
issn 2090-004X
2090-0058
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d70d82b9f91e4e6ea973a5cb5e020f0b
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database; PubMed Central
subjects Algorithms
Artificial intelligence
Data mining
Database searching
Datasets
Diabetic retinopathy
Internet/Web search services
Neural networks
Online searching
title Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essentials%20of%20a%20Robust%20Deep%20Learning%20System%20for%20Diabetic%20Retinopathy%20Screening:%20A%20Systematic%20Literature%20Review&rft.jtitle=Journal%20of%20ophthalmology&rft.au=Vaghefi,%20Ehsan&rft.date=2020-11-16&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2090-004X&rft.eissn=2090-0058&rft_id=info:doi/10.1155/2020/8841927&rft_dat=%3Cgale_doaj_%3EA697110961%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-fcb5f859ee667f5438a5d316c594f424703a3eb03fedebb4c7b3acfefac8054b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465233860&rft_id=info:pmid/&rft_galeid=A697110961&rfr_iscdi=true