Loading…

In vitro evaluation of chloroquine-loaded and heparin surface-functionalized solid lipid nanoparticles

Use of chloroquine, an otherwise safe and relatively affordable anti-malarial drug, was discontinued due to widespread prevalence of resistant parasites. Many entrant anti-malarial drugs for treatment of chloroquine resistant malaria raises the concerns of cost and safety among other challenges. Inn...

Full description

Saved in:
Bibliographic Details
Published in:Malaria journal 2018-04, Vol.17 (1), p.133-133, Article 133
Main Authors: Muga, Joseph O, Gathirwa, Jeremiah W, Tukulula, Matshawandile, Jura, Walter G Z O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Use of chloroquine, an otherwise safe and relatively affordable anti-malarial drug, was discontinued due to widespread prevalence of resistant parasites. Many entrant anti-malarial drugs for treatment of chloroquine resistant malaria raises the concerns of cost and safety among other challenges. Innovative ways of circumventing chloroquine resistance is of paramount importance. Such may include nanoparticulate delivery strategies and targeting. This study evaluated physicochemical properties and in vitro antiplasmodial activity of chloroquine encapsulated heparin functionalized solid lipid nanoparticles (CQ-Hep-SLNs) and non-heparin functionalized SLNs (CQ-SLN) against Plasmodium falciparum. The modified double-emulsion solvent evaporation technique was used to prepare the nanoparticles. HPLC/UV was used to determine the in vitro drug release. The semi-automated micro-dilution technique was adapted in assessing the in vitro antiplasmodial activity to give drug concentration capable of inhibiting 50% of the P. falciparum (IC ), as a function of antiplasmodial efficacy. Prepared nanoparticles were below 500 nm in size with % drug loading (%DL) between 21 and 25% and encapsulation efficiency (%EE) of 78-90%. The drug-loaded SLN exhibited a biphasic drug release profile at pH 7.4, with an initial burst release during the first 24 h followed by sustained release in both formulations. Nanoformulated CQ-SLN (4.72 ± 0.14 ng/mL) and CQ-Hep-SLN (2.41 ± 0.27 ng/mL), showed enhanced in vitro antiplasmodial activities against chloroquine sensitive (D6) strain of P. falciparum, albeit with no activity against the chloroquine resistant W2 strain, compared to free CQ standard (5.81 ± 0.18 ng/mL). These findings suggest that the nanoformulated drugs displayed enhanced anti-malarial activities against chloroquine sensitive (D6) strains of P. falciparum compared to the free CQ standard. There is some form of potential dual synergistic effect of CQ-loaded heparinized solid lipid nanoparticles (Hep-SLN), meaning that combining heparin and CQ in SLNs has beneficial effects, including potential for specific targeting of parasitized red blood cells as afforded by heparin. Thus, the study has produced SLNs nanoparticles that have superior in vitro activities than CQ on CQ-sensitive parasites.
ISSN:1475-2875
1475-2875
DOI:10.1186/s12936-018-2302-9