Loading…
Data science for modeling disease interactions: a baseline algorithm
Multimorbidity is one of the major problems in recent health care systems, the more conditions the patients suffer from, the worst psychological pressures are put upon these patients. We formulate Multimorbidity detection as a hypergraph learning problem. Then we propose an implementation of a multi...
Saved in:
Published in: | E3S Web of Conferences 2022, Vol.351, p.1028 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1858-79b891d9944ffa554c6e380d44ef4fb962722270dc539b88f4e3ebd90d28d4413 |
container_end_page | |
container_issue | |
container_start_page | 1028 |
container_title | E3S Web of Conferences |
container_volume | 351 |
creator | Marzouki, Faouzi Bouattane, Omar |
description | Multimorbidity is one of the major problems in recent health care systems, the more conditions the patients suffer from, the worst psychological pressures are put upon these patients. We formulate Multimorbidity detection as a hypergraph learning problem. Then we propose an implementation of a multimorbidity pattern detection using Multimorbidity coefficient score. This pairwise based algorithm can be considered as a baseline to which other data-driven and machine learning techniques for multimorbidity pattern detection can be evaluated. We illustrate this algorithm by building a co-occurrence model for comorbid diseases over psycho-social profiles present in a real dataset. Based on the comorbidity network of diseases, we conducted mesoscopic analysis using centrality analysis of network disease/nodes and determined potential components of the network using community detection algorithms. The patterns detected in this work by the used algorithms reveal first, that the proposed algorithm can be used as a baseline to other approaches. Second, that aging does not influence the risk of developing Multimorbidity diseases just in quantity, but also in complexity. |
doi_str_mv | 10.1051/e3sconf/202235101028 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7136cf61695471aaf978f18d4c14b16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7136cf61695471aaf978f18d4c14b16</doaj_id><sourcerecordid>2671968288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1858-79b891d9944ffa554c6e380d44ef4fb962722270dc539b88f4e3ebd90d28d4413</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhhdRsNT-Aw8Bz2sz2SSbeJPWj0LBi55DNh81ZbupyfbgvzfaIj3N8PLwzvBU1S3ge8AM5q7JJg5-TjAhDQMMmIiLakIIb2sglFye7dfVLOctxhgIExTTSbVc6lGjbIIbjEM-JrSL1vVh2CAbstPZoTCMLmkzhjjkB6RRV8ICOKT7TUxh_NzdVFde99nNTnNafTw_vS9e6_Xby2rxuK4NCCbqVnZCgpWSUu81Y9Rw1whsKXWe-k5y0hJCWmwNawoqPHWN66zElogCQTOtVsdeG_VW7VPY6fStog7qL4hpo3Qag-mdsi003HgOXDLagtZetsJD6TFAO-Cl6-7YtU_x6-DyqLbxkIbyviq2QHJBhCgUPVImxZyT8_9XAatf_eqkX53rb34AGSZ3kg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671968288</pqid></control><display><type>article</type><title>Data science for modeling disease interactions: a baseline algorithm</title><source>Publicly Available Content (ProQuest)</source><creator>Marzouki, Faouzi ; Bouattane, Omar</creator><contributor>Gerasymov, O. ; Bennani Dosse, S. ; Slimani, K. ; Ait Kbir, M. ; Amrani, A. ; Bourekkadi, S.</contributor><creatorcontrib>Marzouki, Faouzi ; Bouattane, Omar ; Gerasymov, O. ; Bennani Dosse, S. ; Slimani, K. ; Ait Kbir, M. ; Amrani, A. ; Bourekkadi, S.</creatorcontrib><description>Multimorbidity is one of the major problems in recent health care systems, the more conditions the patients suffer from, the worst psychological pressures are put upon these patients. We formulate Multimorbidity detection as a hypergraph learning problem. Then we propose an implementation of a multimorbidity pattern detection using Multimorbidity coefficient score. This pairwise based algorithm can be considered as a baseline to which other data-driven and machine learning techniques for multimorbidity pattern detection can be evaluated. We illustrate this algorithm by building a co-occurrence model for comorbid diseases over psycho-social profiles present in a real dataset. Based on the comorbidity network of diseases, we conducted mesoscopic analysis using centrality analysis of network disease/nodes and determined potential components of the network using community detection algorithms. The patterns detected in this work by the used algorithms reveal first, that the proposed algorithm can be used as a baseline to other approaches. Second, that aging does not influence the risk of developing Multimorbidity diseases just in quantity, but also in complexity.</description><identifier>ISSN: 2267-1242</identifier><identifier>ISSN: 2555-0403</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202235101028</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Aging ; Algorithms ; Comorbidity ; Data science ; Diseases ; Health care ; Health risks ; Machine learning ; Network analysis ; Patients</subject><ispartof>E3S Web of Conferences, 2022, Vol.351, p.1028</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1858-79b891d9944ffa554c6e380d44ef4fb962722270dc539b88f4e3ebd90d28d4413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2671968288?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4024,23930,23931,25140,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Gerasymov, O.</contributor><contributor>Bennani Dosse, S.</contributor><contributor>Slimani, K.</contributor><contributor>Ait Kbir, M.</contributor><contributor>Amrani, A.</contributor><contributor>Bourekkadi, S.</contributor><creatorcontrib>Marzouki, Faouzi</creatorcontrib><creatorcontrib>Bouattane, Omar</creatorcontrib><title>Data science for modeling disease interactions: a baseline algorithm</title><title>E3S Web of Conferences</title><description>Multimorbidity is one of the major problems in recent health care systems, the more conditions the patients suffer from, the worst psychological pressures are put upon these patients. We formulate Multimorbidity detection as a hypergraph learning problem. Then we propose an implementation of a multimorbidity pattern detection using Multimorbidity coefficient score. This pairwise based algorithm can be considered as a baseline to which other data-driven and machine learning techniques for multimorbidity pattern detection can be evaluated. We illustrate this algorithm by building a co-occurrence model for comorbid diseases over psycho-social profiles present in a real dataset. Based on the comorbidity network of diseases, we conducted mesoscopic analysis using centrality analysis of network disease/nodes and determined potential components of the network using community detection algorithms. The patterns detected in this work by the used algorithms reveal first, that the proposed algorithm can be used as a baseline to other approaches. Second, that aging does not influence the risk of developing Multimorbidity diseases just in quantity, but also in complexity.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Comorbidity</subject><subject>Data science</subject><subject>Diseases</subject><subject>Health care</subject><subject>Health risks</subject><subject>Machine learning</subject><subject>Network analysis</subject><subject>Patients</subject><issn>2267-1242</issn><issn>2555-0403</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhhdRsNT-Aw8Bz2sz2SSbeJPWj0LBi55DNh81ZbupyfbgvzfaIj3N8PLwzvBU1S3ge8AM5q7JJg5-TjAhDQMMmIiLakIIb2sglFye7dfVLOctxhgIExTTSbVc6lGjbIIbjEM-JrSL1vVh2CAbstPZoTCMLmkzhjjkB6RRV8ICOKT7TUxh_NzdVFde99nNTnNafTw_vS9e6_Xby2rxuK4NCCbqVnZCgpWSUu81Y9Rw1whsKXWe-k5y0hJCWmwNawoqPHWN66zElogCQTOtVsdeG_VW7VPY6fStog7qL4hpo3Qag-mdsi003HgOXDLagtZetsJD6TFAO-Cl6-7YtU_x6-DyqLbxkIbyviq2QHJBhCgUPVImxZyT8_9XAatf_eqkX53rb34AGSZ3kg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Marzouki, Faouzi</creator><creator>Bouattane, Omar</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>2022</creationdate><title>Data science for modeling disease interactions: a baseline algorithm</title><author>Marzouki, Faouzi ; Bouattane, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1858-79b891d9944ffa554c6e380d44ef4fb962722270dc539b88f4e3ebd90d28d4413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Comorbidity</topic><topic>Data science</topic><topic>Diseases</topic><topic>Health care</topic><topic>Health risks</topic><topic>Machine learning</topic><topic>Network analysis</topic><topic>Patients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzouki, Faouzi</creatorcontrib><creatorcontrib>Bouattane, Omar</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S Web of Conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzouki, Faouzi</au><au>Bouattane, Omar</au><au>Gerasymov, O.</au><au>Bennani Dosse, S.</au><au>Slimani, K.</au><au>Ait Kbir, M.</au><au>Amrani, A.</au><au>Bourekkadi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data science for modeling disease interactions: a baseline algorithm</atitle><jtitle>E3S Web of Conferences</jtitle><date>2022</date><risdate>2022</risdate><volume>351</volume><spage>1028</spage><pages>1028-</pages><issn>2267-1242</issn><issn>2555-0403</issn><eissn>2267-1242</eissn><abstract>Multimorbidity is one of the major problems in recent health care systems, the more conditions the patients suffer from, the worst psychological pressures are put upon these patients. We formulate Multimorbidity detection as a hypergraph learning problem. Then we propose an implementation of a multimorbidity pattern detection using Multimorbidity coefficient score. This pairwise based algorithm can be considered as a baseline to which other data-driven and machine learning techniques for multimorbidity pattern detection can be evaluated. We illustrate this algorithm by building a co-occurrence model for comorbid diseases over psycho-social profiles present in a real dataset. Based on the comorbidity network of diseases, we conducted mesoscopic analysis using centrality analysis of network disease/nodes and determined potential components of the network using community detection algorithms. The patterns detected in this work by the used algorithms reveal first, that the proposed algorithm can be used as a baseline to other approaches. Second, that aging does not influence the risk of developing Multimorbidity diseases just in quantity, but also in complexity.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202235101028</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2267-1242 |
ispartof | E3S Web of Conferences, 2022, Vol.351, p.1028 |
issn | 2267-1242 2555-0403 2267-1242 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d7136cf61695471aaf978f18d4c14b16 |
source | Publicly Available Content (ProQuest) |
subjects | Aging Algorithms Comorbidity Data science Diseases Health care Health risks Machine learning Network analysis Patients |
title | Data science for modeling disease interactions: a baseline algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20science%20for%20modeling%20disease%20interactions:%20a%20baseline%20algorithm&rft.jtitle=E3S%20Web%20of%20Conferences&rft.au=Marzouki,%20Faouzi&rft.date=2022&rft.volume=351&rft.spage=1028&rft.pages=1028-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202235101028&rft_dat=%3Cproquest_doaj_%3E2671968288%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1858-79b891d9944ffa554c6e380d44ef4fb962722270dc539b88f4e3ebd90d28d4413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2671968288&rft_id=info:pmid/&rfr_iscdi=true |