Loading…

Data science for modeling disease interactions: a baseline algorithm

Multimorbidity is one of the major problems in recent health care systems, the more conditions the patients suffer from, the worst psychological pressures are put upon these patients. We formulate Multimorbidity detection as a hypergraph learning problem. Then we propose an implementation of a multi...

Full description

Saved in:
Bibliographic Details
Published in:E3S Web of Conferences 2022, Vol.351, p.1028
Main Authors: Marzouki, Faouzi, Bouattane, Omar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1858-79b891d9944ffa554c6e380d44ef4fb962722270dc539b88f4e3ebd90d28d4413
container_end_page
container_issue
container_start_page 1028
container_title E3S Web of Conferences
container_volume 351
creator Marzouki, Faouzi
Bouattane, Omar
description Multimorbidity is one of the major problems in recent health care systems, the more conditions the patients suffer from, the worst psychological pressures are put upon these patients. We formulate Multimorbidity detection as a hypergraph learning problem. Then we propose an implementation of a multimorbidity pattern detection using Multimorbidity coefficient score. This pairwise based algorithm can be considered as a baseline to which other data-driven and machine learning techniques for multimorbidity pattern detection can be evaluated. We illustrate this algorithm by building a co-occurrence model for comorbid diseases over psycho-social profiles present in a real dataset. Based on the comorbidity network of diseases, we conducted mesoscopic analysis using centrality analysis of network disease/nodes and determined potential components of the network using community detection algorithms. The patterns detected in this work by the used algorithms reveal first, that the proposed algorithm can be used as a baseline to other approaches. Second, that aging does not influence the risk of developing Multimorbidity diseases just in quantity, but also in complexity.
doi_str_mv 10.1051/e3sconf/202235101028
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7136cf61695471aaf978f18d4c14b16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7136cf61695471aaf978f18d4c14b16</doaj_id><sourcerecordid>2671968288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1858-79b891d9944ffa554c6e380d44ef4fb962722270dc539b88f4e3ebd90d28d4413</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhhdRsNT-Aw8Bz2sz2SSbeJPWj0LBi55DNh81ZbupyfbgvzfaIj3N8PLwzvBU1S3ge8AM5q7JJg5-TjAhDQMMmIiLakIIb2sglFye7dfVLOctxhgIExTTSbVc6lGjbIIbjEM-JrSL1vVh2CAbstPZoTCMLmkzhjjkB6RRV8ICOKT7TUxh_NzdVFde99nNTnNafTw_vS9e6_Xby2rxuK4NCCbqVnZCgpWSUu81Y9Rw1whsKXWe-k5y0hJCWmwNawoqPHWN66zElogCQTOtVsdeG_VW7VPY6fStog7qL4hpo3Qag-mdsi003HgOXDLagtZetsJD6TFAO-Cl6-7YtU_x6-DyqLbxkIbyviq2QHJBhCgUPVImxZyT8_9XAatf_eqkX53rb34AGSZ3kg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671968288</pqid></control><display><type>article</type><title>Data science for modeling disease interactions: a baseline algorithm</title><source>Publicly Available Content (ProQuest)</source><creator>Marzouki, Faouzi ; Bouattane, Omar</creator><contributor>Gerasymov, O. ; Bennani Dosse, S. ; Slimani, K. ; Ait Kbir, M. ; Amrani, A. ; Bourekkadi, S.</contributor><creatorcontrib>Marzouki, Faouzi ; Bouattane, Omar ; Gerasymov, O. ; Bennani Dosse, S. ; Slimani, K. ; Ait Kbir, M. ; Amrani, A. ; Bourekkadi, S.</creatorcontrib><description>Multimorbidity is one of the major problems in recent health care systems, the more conditions the patients suffer from, the worst psychological pressures are put upon these patients. We formulate Multimorbidity detection as a hypergraph learning problem. Then we propose an implementation of a multimorbidity pattern detection using Multimorbidity coefficient score. This pairwise based algorithm can be considered as a baseline to which other data-driven and machine learning techniques for multimorbidity pattern detection can be evaluated. We illustrate this algorithm by building a co-occurrence model for comorbid diseases over psycho-social profiles present in a real dataset. Based on the comorbidity network of diseases, we conducted mesoscopic analysis using centrality analysis of network disease/nodes and determined potential components of the network using community detection algorithms. The patterns detected in this work by the used algorithms reveal first, that the proposed algorithm can be used as a baseline to other approaches. Second, that aging does not influence the risk of developing Multimorbidity diseases just in quantity, but also in complexity.</description><identifier>ISSN: 2267-1242</identifier><identifier>ISSN: 2555-0403</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202235101028</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Aging ; Algorithms ; Comorbidity ; Data science ; Diseases ; Health care ; Health risks ; Machine learning ; Network analysis ; Patients</subject><ispartof>E3S Web of Conferences, 2022, Vol.351, p.1028</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1858-79b891d9944ffa554c6e380d44ef4fb962722270dc539b88f4e3ebd90d28d4413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2671968288?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4024,23930,23931,25140,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Gerasymov, O.</contributor><contributor>Bennani Dosse, S.</contributor><contributor>Slimani, K.</contributor><contributor>Ait Kbir, M.</contributor><contributor>Amrani, A.</contributor><contributor>Bourekkadi, S.</contributor><creatorcontrib>Marzouki, Faouzi</creatorcontrib><creatorcontrib>Bouattane, Omar</creatorcontrib><title>Data science for modeling disease interactions: a baseline algorithm</title><title>E3S Web of Conferences</title><description>Multimorbidity is one of the major problems in recent health care systems, the more conditions the patients suffer from, the worst psychological pressures are put upon these patients. We formulate Multimorbidity detection as a hypergraph learning problem. Then we propose an implementation of a multimorbidity pattern detection using Multimorbidity coefficient score. This pairwise based algorithm can be considered as a baseline to which other data-driven and machine learning techniques for multimorbidity pattern detection can be evaluated. We illustrate this algorithm by building a co-occurrence model for comorbid diseases over psycho-social profiles present in a real dataset. Based on the comorbidity network of diseases, we conducted mesoscopic analysis using centrality analysis of network disease/nodes and determined potential components of the network using community detection algorithms. The patterns detected in this work by the used algorithms reveal first, that the proposed algorithm can be used as a baseline to other approaches. Second, that aging does not influence the risk of developing Multimorbidity diseases just in quantity, but also in complexity.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Comorbidity</subject><subject>Data science</subject><subject>Diseases</subject><subject>Health care</subject><subject>Health risks</subject><subject>Machine learning</subject><subject>Network analysis</subject><subject>Patients</subject><issn>2267-1242</issn><issn>2555-0403</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhhdRsNT-Aw8Bz2sz2SSbeJPWj0LBi55DNh81ZbupyfbgvzfaIj3N8PLwzvBU1S3ge8AM5q7JJg5-TjAhDQMMmIiLakIIb2sglFye7dfVLOctxhgIExTTSbVc6lGjbIIbjEM-JrSL1vVh2CAbstPZoTCMLmkzhjjkB6RRV8ICOKT7TUxh_NzdVFde99nNTnNafTw_vS9e6_Xby2rxuK4NCCbqVnZCgpWSUu81Y9Rw1whsKXWe-k5y0hJCWmwNawoqPHWN66zElogCQTOtVsdeG_VW7VPY6fStog7qL4hpo3Qag-mdsi003HgOXDLagtZetsJD6TFAO-Cl6-7YtU_x6-DyqLbxkIbyviq2QHJBhCgUPVImxZyT8_9XAatf_eqkX53rb34AGSZ3kg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Marzouki, Faouzi</creator><creator>Bouattane, Omar</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>2022</creationdate><title>Data science for modeling disease interactions: a baseline algorithm</title><author>Marzouki, Faouzi ; Bouattane, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1858-79b891d9944ffa554c6e380d44ef4fb962722270dc539b88f4e3ebd90d28d4413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Comorbidity</topic><topic>Data science</topic><topic>Diseases</topic><topic>Health care</topic><topic>Health risks</topic><topic>Machine learning</topic><topic>Network analysis</topic><topic>Patients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzouki, Faouzi</creatorcontrib><creatorcontrib>Bouattane, Omar</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S Web of Conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzouki, Faouzi</au><au>Bouattane, Omar</au><au>Gerasymov, O.</au><au>Bennani Dosse, S.</au><au>Slimani, K.</au><au>Ait Kbir, M.</au><au>Amrani, A.</au><au>Bourekkadi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data science for modeling disease interactions: a baseline algorithm</atitle><jtitle>E3S Web of Conferences</jtitle><date>2022</date><risdate>2022</risdate><volume>351</volume><spage>1028</spage><pages>1028-</pages><issn>2267-1242</issn><issn>2555-0403</issn><eissn>2267-1242</eissn><abstract>Multimorbidity is one of the major problems in recent health care systems, the more conditions the patients suffer from, the worst psychological pressures are put upon these patients. We formulate Multimorbidity detection as a hypergraph learning problem. Then we propose an implementation of a multimorbidity pattern detection using Multimorbidity coefficient score. This pairwise based algorithm can be considered as a baseline to which other data-driven and machine learning techniques for multimorbidity pattern detection can be evaluated. We illustrate this algorithm by building a co-occurrence model for comorbid diseases over psycho-social profiles present in a real dataset. Based on the comorbidity network of diseases, we conducted mesoscopic analysis using centrality analysis of network disease/nodes and determined potential components of the network using community detection algorithms. The patterns detected in this work by the used algorithms reveal first, that the proposed algorithm can be used as a baseline to other approaches. Second, that aging does not influence the risk of developing Multimorbidity diseases just in quantity, but also in complexity.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202235101028</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2267-1242
ispartof E3S Web of Conferences, 2022, Vol.351, p.1028
issn 2267-1242
2555-0403
2267-1242
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d7136cf61695471aaf978f18d4c14b16
source Publicly Available Content (ProQuest)
subjects Aging
Algorithms
Comorbidity
Data science
Diseases
Health care
Health risks
Machine learning
Network analysis
Patients
title Data science for modeling disease interactions: a baseline algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20science%20for%20modeling%20disease%20interactions:%20a%20baseline%20algorithm&rft.jtitle=E3S%20Web%20of%20Conferences&rft.au=Marzouki,%20Faouzi&rft.date=2022&rft.volume=351&rft.spage=1028&rft.pages=1028-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202235101028&rft_dat=%3Cproquest_doaj_%3E2671968288%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1858-79b891d9944ffa554c6e380d44ef4fb962722270dc539b88f4e3ebd90d28d4413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2671968288&rft_id=info:pmid/&rfr_iscdi=true