Loading…

Depth Optimization of CZ, CNOT, and Clifford Circuits

We seek to develop better upper bound guarantees on the depth of quantum \text {CZ} gate, cnot gate, and Clifford circuits than those reported previously. We focus on the number of qubits n\,{\leq }\,1 345 000 (de Brugière et al. , 2021), which represents the most practical use case. Our upper bound...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on quantum engineering 2022, Vol.3, p.1-8
Main Authors: Maslov, Dmitri, Zindorf, Ben
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13
cites cdi_FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13
container_end_page 8
container_issue
container_start_page 1
container_title IEEE transactions on quantum engineering
container_volume 3
creator Maslov, Dmitri
Zindorf, Ben
description We seek to develop better upper bound guarantees on the depth of quantum \text {CZ} gate, cnot gate, and Clifford circuits than those reported previously. We focus on the number of qubits n\,{\leq }\,1 345 000 (de Brugière et al. , 2021), which represents the most practical use case. Our upper bound on the depth of \text {CZ} circuits is \lfloor n/2 + 0.4993{\cdot }\log ^{2}(n) + 3.0191{\cdot }\log (n) - 10.9139\rfloor, improving the best-known depth by a factor of roughly 2. We extend the constructions used to prove this upper bound to obtain depth upper bound of \lfloor n + 1.9496{\cdot }\log ^{2}(n) + 3.5075{\cdot }\log (n) - 23.4269 \rfloor for cnot gate circuits, offering an improvement by a factor of roughly 4/3 over the state of the art, and depth upper bound of \lfloor 2n + 2.9487{\cdot }\log ^{2}(n) + 8.4909{\cdot }\log (n) - 44.4798\rfloor for Clifford circuits, offering an improvement by a factor of roughly 5/3.
doi_str_mv 10.1109/TQE.2022.3180900
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d714fff174434b3b87e350cb22f20e9b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9792395</ieee_id><doaj_id>oai_doaj_org_article_d714fff174434b3b87e350cb22f20e9b</doaj_id><sourcerecordid>2681957038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxYMoWGrvgpeA17bOfiTZPUqsWigWoV68LPupW9pu3KQH_evdmlI8zZvhzZvhl2XXCKYIAb9bvc6mGDCeEsSAA5xlA1wyPkkdO_-nL7NR264BABcIlYAHWfFgm-4zXzad3_of2fmwy4PL6_dxXr8sV-Nc7kxeb7xzISbho977rr3KLpzctHZ0rMPs7XG2qp8ni-XTvL5fTDThvJtgrg0uK1k4aVUlS2MrpJQBKjVgpSlQ7VxRAUbUstLqEjNtSs4oFJQahcgwm_e5Jsi1aKLfyvgtgvTibxDih5Cx83pjhakQdc6hilJCFVGssqQArTB2GCxXKeu2z2pi-NrbthPrsI-79L5IfBBPfxCWXNC7dAxtG607XUUgDqxFYi0OrMWRdVq56Ve8tfZk5xXHhBfkF2RSd0Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681957038</pqid></control><display><type>article</type><title>Depth Optimization of CZ, CNOT, and Clifford Circuits</title><source>IEEE Xplore Open Access Journals</source><creator>Maslov, Dmitri ; Zindorf, Ben</creator><creatorcontrib>Maslov, Dmitri ; Zindorf, Ben</creatorcontrib><description><![CDATA[We seek to develop better upper bound guarantees on the depth of quantum <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> gate, cnot gate, and Clifford circuits than those reported previously. We focus on the number of qubits <inline-formula><tex-math notation="LaTeX">n\,{\leq }\,</tex-math></inline-formula>1 345 000 (de Brugière et al. , 2021), which represents the most practical use case. Our upper bound on the depth of <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> circuits is <inline-formula><tex-math notation="LaTeX">\lfloor n/2 + 0.4993{\cdot }\log ^{2}(n) + 3.0191{\cdot }\log (n) - 10.9139\rfloor</tex-math></inline-formula>, improving the best-known depth by a factor of roughly 2. We extend the constructions used to prove this upper bound to obtain depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor n + 1.9496{\cdot }\log ^{2}(n) + 3.5075{\cdot }\log (n) - 23.4269 \rfloor</tex-math></inline-formula> for cnot gate circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">4/3</tex-math></inline-formula> over the state of the art, and depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor 2n + 2.9487{\cdot }\log ^{2}(n) + 8.4909{\cdot }\log (n) - 44.4798\rfloor</tex-math></inline-formula> for Clifford circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">5/3</tex-math></inline-formula>.]]></description><identifier>ISSN: 2689-1808</identifier><identifier>EISSN: 2689-1808</identifier><identifier>DOI: 10.1109/TQE.2022.3180900</identifier><identifier>CODEN: ITQEA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clifford circuits ; Color ; Costs ; Gates (circuits) ; Ions ; Logic gates ; Optimization ; Quantum circuit ; quantum circuit depth ; quantum circuit synthesis ; quantum circuits ; Qubit ; Qubits (quantum computing) ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on quantum engineering, 2022, Vol.3, p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13</citedby><cites>FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13</cites><orcidid>0000-0001-8630-3501 ; 0000-0001-7381-4556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9792395$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Maslov, Dmitri</creatorcontrib><creatorcontrib>Zindorf, Ben</creatorcontrib><title>Depth Optimization of CZ, CNOT, and Clifford Circuits</title><title>IEEE transactions on quantum engineering</title><addtitle>TQE</addtitle><description><![CDATA[We seek to develop better upper bound guarantees on the depth of quantum <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> gate, cnot gate, and Clifford circuits than those reported previously. We focus on the number of qubits <inline-formula><tex-math notation="LaTeX">n\,{\leq }\,</tex-math></inline-formula>1 345 000 (de Brugière et al. , 2021), which represents the most practical use case. Our upper bound on the depth of <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> circuits is <inline-formula><tex-math notation="LaTeX">\lfloor n/2 + 0.4993{\cdot }\log ^{2}(n) + 3.0191{\cdot }\log (n) - 10.9139\rfloor</tex-math></inline-formula>, improving the best-known depth by a factor of roughly 2. We extend the constructions used to prove this upper bound to obtain depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor n + 1.9496{\cdot }\log ^{2}(n) + 3.5075{\cdot }\log (n) - 23.4269 \rfloor</tex-math></inline-formula> for cnot gate circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">4/3</tex-math></inline-formula> over the state of the art, and depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor 2n + 2.9487{\cdot }\log ^{2}(n) + 8.4909{\cdot }\log (n) - 44.4798\rfloor</tex-math></inline-formula> for Clifford circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">5/3</tex-math></inline-formula>.]]></description><subject>Clifford circuits</subject><subject>Color</subject><subject>Costs</subject><subject>Gates (circuits)</subject><subject>Ions</subject><subject>Logic gates</subject><subject>Optimization</subject><subject>Quantum circuit</subject><subject>quantum circuit depth</subject><subject>quantum circuit synthesis</subject><subject>quantum circuits</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>2689-1808</issn><issn>2689-1808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1Lw0AQxYMoWGrvgpeA17bOfiTZPUqsWigWoV68LPupW9pu3KQH_evdmlI8zZvhzZvhl2XXCKYIAb9bvc6mGDCeEsSAA5xlA1wyPkkdO_-nL7NR264BABcIlYAHWfFgm-4zXzad3_of2fmwy4PL6_dxXr8sV-Nc7kxeb7xzISbho977rr3KLpzctHZ0rMPs7XG2qp8ni-XTvL5fTDThvJtgrg0uK1k4aVUlS2MrpJQBKjVgpSlQ7VxRAUbUstLqEjNtSs4oFJQahcgwm_e5Jsi1aKLfyvgtgvTibxDih5Cx83pjhakQdc6hilJCFVGssqQArTB2GCxXKeu2z2pi-NrbthPrsI-79L5IfBBPfxCWXNC7dAxtG607XUUgDqxFYi0OrMWRdVq56Ve8tfZk5xXHhBfkF2RSd0Y</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Maslov, Dmitri</creator><creator>Zindorf, Ben</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8630-3501</orcidid><orcidid>https://orcid.org/0000-0001-7381-4556</orcidid></search><sort><creationdate>2022</creationdate><title>Depth Optimization of CZ, CNOT, and Clifford Circuits</title><author>Maslov, Dmitri ; Zindorf, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clifford circuits</topic><topic>Color</topic><topic>Costs</topic><topic>Gates (circuits)</topic><topic>Ions</topic><topic>Logic gates</topic><topic>Optimization</topic><topic>Quantum circuit</topic><topic>quantum circuit depth</topic><topic>quantum circuit synthesis</topic><topic>quantum circuits</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maslov, Dmitri</creatorcontrib><creatorcontrib>Zindorf, Ben</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on quantum engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maslov, Dmitri</au><au>Zindorf, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth Optimization of CZ, CNOT, and Clifford Circuits</atitle><jtitle>IEEE transactions on quantum engineering</jtitle><stitle>TQE</stitle><date>2022</date><risdate>2022</risdate><volume>3</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2689-1808</issn><eissn>2689-1808</eissn><coden>ITQEA9</coden><abstract><![CDATA[We seek to develop better upper bound guarantees on the depth of quantum <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> gate, cnot gate, and Clifford circuits than those reported previously. We focus on the number of qubits <inline-formula><tex-math notation="LaTeX">n\,{\leq }\,</tex-math></inline-formula>1 345 000 (de Brugière et al. , 2021), which represents the most practical use case. Our upper bound on the depth of <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> circuits is <inline-formula><tex-math notation="LaTeX">\lfloor n/2 + 0.4993{\cdot }\log ^{2}(n) + 3.0191{\cdot }\log (n) - 10.9139\rfloor</tex-math></inline-formula>, improving the best-known depth by a factor of roughly 2. We extend the constructions used to prove this upper bound to obtain depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor n + 1.9496{\cdot }\log ^{2}(n) + 3.5075{\cdot }\log (n) - 23.4269 \rfloor</tex-math></inline-formula> for cnot gate circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">4/3</tex-math></inline-formula> over the state of the art, and depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor 2n + 2.9487{\cdot }\log ^{2}(n) + 8.4909{\cdot }\log (n) - 44.4798\rfloor</tex-math></inline-formula> for Clifford circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">5/3</tex-math></inline-formula>.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TQE.2022.3180900</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8630-3501</orcidid><orcidid>https://orcid.org/0000-0001-7381-4556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2689-1808
ispartof IEEE transactions on quantum engineering, 2022, Vol.3, p.1-8
issn 2689-1808
2689-1808
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d714fff174434b3b87e350cb22f20e9b
source IEEE Xplore Open Access Journals
subjects Clifford circuits
Color
Costs
Gates (circuits)
Ions
Logic gates
Optimization
Quantum circuit
quantum circuit depth
quantum circuit synthesis
quantum circuits
Qubit
Qubits (quantum computing)
Upper bound
Upper bounds
title Depth Optimization of CZ, CNOT, and Clifford Circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth%20Optimization%20of%20CZ,%20CNOT,%20and%20Clifford%20Circuits&rft.jtitle=IEEE%20transactions%20on%20quantum%20engineering&rft.au=Maslov,%20Dmitri&rft.date=2022&rft.volume=3&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2689-1808&rft.eissn=2689-1808&rft.coden=ITQEA9&rft_id=info:doi/10.1109/TQE.2022.3180900&rft_dat=%3Cproquest_doaj_%3E2681957038%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681957038&rft_id=info:pmid/&rft_ieee_id=9792395&rfr_iscdi=true