Loading…
Depth Optimization of CZ, CNOT, and Clifford Circuits
We seek to develop better upper bound guarantees on the depth of quantum \text {CZ} gate, cnot gate, and Clifford circuits than those reported previously. We focus on the number of qubits n\,{\leq }\,1 345 000 (de Brugière et al. , 2021), which represents the most practical use case. Our upper bound...
Saved in:
Published in: | IEEE transactions on quantum engineering 2022, Vol.3, p.1-8 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13 |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13 |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on quantum engineering |
container_volume | 3 |
creator | Maslov, Dmitri Zindorf, Ben |
description | We seek to develop better upper bound guarantees on the depth of quantum \text {CZ} gate, cnot gate, and Clifford circuits than those reported previously. We focus on the number of qubits n\,{\leq }\,1 345 000 (de Brugière et al. , 2021), which represents the most practical use case. Our upper bound on the depth of \text {CZ} circuits is \lfloor n/2 + 0.4993{\cdot }\log ^{2}(n) + 3.0191{\cdot }\log (n) - 10.9139\rfloor, improving the best-known depth by a factor of roughly 2. We extend the constructions used to prove this upper bound to obtain depth upper bound of \lfloor n + 1.9496{\cdot }\log ^{2}(n) + 3.5075{\cdot }\log (n) - 23.4269 \rfloor for cnot gate circuits, offering an improvement by a factor of roughly 4/3 over the state of the art, and depth upper bound of \lfloor 2n + 2.9487{\cdot }\log ^{2}(n) + 8.4909{\cdot }\log (n) - 44.4798\rfloor for Clifford circuits, offering an improvement by a factor of roughly 5/3. |
doi_str_mv | 10.1109/TQE.2022.3180900 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d714fff174434b3b87e350cb22f20e9b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9792395</ieee_id><doaj_id>oai_doaj_org_article_d714fff174434b3b87e350cb22f20e9b</doaj_id><sourcerecordid>2681957038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxYMoWGrvgpeA17bOfiTZPUqsWigWoV68LPupW9pu3KQH_evdmlI8zZvhzZvhl2XXCKYIAb9bvc6mGDCeEsSAA5xlA1wyPkkdO_-nL7NR264BABcIlYAHWfFgm-4zXzad3_of2fmwy4PL6_dxXr8sV-Nc7kxeb7xzISbho977rr3KLpzctHZ0rMPs7XG2qp8ni-XTvL5fTDThvJtgrg0uK1k4aVUlS2MrpJQBKjVgpSlQ7VxRAUbUstLqEjNtSs4oFJQahcgwm_e5Jsi1aKLfyvgtgvTibxDih5Cx83pjhakQdc6hilJCFVGssqQArTB2GCxXKeu2z2pi-NrbthPrsI-79L5IfBBPfxCWXNC7dAxtG607XUUgDqxFYi0OrMWRdVq56Ve8tfZk5xXHhBfkF2RSd0Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681957038</pqid></control><display><type>article</type><title>Depth Optimization of CZ, CNOT, and Clifford Circuits</title><source>IEEE Xplore Open Access Journals</source><creator>Maslov, Dmitri ; Zindorf, Ben</creator><creatorcontrib>Maslov, Dmitri ; Zindorf, Ben</creatorcontrib><description><![CDATA[We seek to develop better upper bound guarantees on the depth of quantum <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> gate, cnot gate, and Clifford circuits than those reported previously. We focus on the number of qubits <inline-formula><tex-math notation="LaTeX">n\,{\leq }\,</tex-math></inline-formula>1 345 000 (de Brugière et al. , 2021), which represents the most practical use case. Our upper bound on the depth of <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> circuits is <inline-formula><tex-math notation="LaTeX">\lfloor n/2 + 0.4993{\cdot }\log ^{2}(n) + 3.0191{\cdot }\log (n) - 10.9139\rfloor</tex-math></inline-formula>, improving the best-known depth by a factor of roughly 2. We extend the constructions used to prove this upper bound to obtain depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor n + 1.9496{\cdot }\log ^{2}(n) + 3.5075{\cdot }\log (n) - 23.4269 \rfloor</tex-math></inline-formula> for cnot gate circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">4/3</tex-math></inline-formula> over the state of the art, and depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor 2n + 2.9487{\cdot }\log ^{2}(n) + 8.4909{\cdot }\log (n) - 44.4798\rfloor</tex-math></inline-formula> for Clifford circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">5/3</tex-math></inline-formula>.]]></description><identifier>ISSN: 2689-1808</identifier><identifier>EISSN: 2689-1808</identifier><identifier>DOI: 10.1109/TQE.2022.3180900</identifier><identifier>CODEN: ITQEA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clifford circuits ; Color ; Costs ; Gates (circuits) ; Ions ; Logic gates ; Optimization ; Quantum circuit ; quantum circuit depth ; quantum circuit synthesis ; quantum circuits ; Qubit ; Qubits (quantum computing) ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on quantum engineering, 2022, Vol.3, p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13</citedby><cites>FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13</cites><orcidid>0000-0001-8630-3501 ; 0000-0001-7381-4556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9792395$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Maslov, Dmitri</creatorcontrib><creatorcontrib>Zindorf, Ben</creatorcontrib><title>Depth Optimization of CZ, CNOT, and Clifford Circuits</title><title>IEEE transactions on quantum engineering</title><addtitle>TQE</addtitle><description><![CDATA[We seek to develop better upper bound guarantees on the depth of quantum <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> gate, cnot gate, and Clifford circuits than those reported previously. We focus on the number of qubits <inline-formula><tex-math notation="LaTeX">n\,{\leq }\,</tex-math></inline-formula>1 345 000 (de Brugière et al. , 2021), which represents the most practical use case. Our upper bound on the depth of <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> circuits is <inline-formula><tex-math notation="LaTeX">\lfloor n/2 + 0.4993{\cdot }\log ^{2}(n) + 3.0191{\cdot }\log (n) - 10.9139\rfloor</tex-math></inline-formula>, improving the best-known depth by a factor of roughly 2. We extend the constructions used to prove this upper bound to obtain depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor n + 1.9496{\cdot }\log ^{2}(n) + 3.5075{\cdot }\log (n) - 23.4269 \rfloor</tex-math></inline-formula> for cnot gate circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">4/3</tex-math></inline-formula> over the state of the art, and depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor 2n + 2.9487{\cdot }\log ^{2}(n) + 8.4909{\cdot }\log (n) - 44.4798\rfloor</tex-math></inline-formula> for Clifford circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">5/3</tex-math></inline-formula>.]]></description><subject>Clifford circuits</subject><subject>Color</subject><subject>Costs</subject><subject>Gates (circuits)</subject><subject>Ions</subject><subject>Logic gates</subject><subject>Optimization</subject><subject>Quantum circuit</subject><subject>quantum circuit depth</subject><subject>quantum circuit synthesis</subject><subject>quantum circuits</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>2689-1808</issn><issn>2689-1808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1Lw0AQxYMoWGrvgpeA17bOfiTZPUqsWigWoV68LPupW9pu3KQH_evdmlI8zZvhzZvhl2XXCKYIAb9bvc6mGDCeEsSAA5xlA1wyPkkdO_-nL7NR264BABcIlYAHWfFgm-4zXzad3_of2fmwy4PL6_dxXr8sV-Nc7kxeb7xzISbho977rr3KLpzctHZ0rMPs7XG2qp8ni-XTvL5fTDThvJtgrg0uK1k4aVUlS2MrpJQBKjVgpSlQ7VxRAUbUstLqEjNtSs4oFJQahcgwm_e5Jsi1aKLfyvgtgvTibxDih5Cx83pjhakQdc6hilJCFVGssqQArTB2GCxXKeu2z2pi-NrbthPrsI-79L5IfBBPfxCWXNC7dAxtG607XUUgDqxFYi0OrMWRdVq56Ve8tfZk5xXHhBfkF2RSd0Y</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Maslov, Dmitri</creator><creator>Zindorf, Ben</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8630-3501</orcidid><orcidid>https://orcid.org/0000-0001-7381-4556</orcidid></search><sort><creationdate>2022</creationdate><title>Depth Optimization of CZ, CNOT, and Clifford Circuits</title><author>Maslov, Dmitri ; Zindorf, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clifford circuits</topic><topic>Color</topic><topic>Costs</topic><topic>Gates (circuits)</topic><topic>Ions</topic><topic>Logic gates</topic><topic>Optimization</topic><topic>Quantum circuit</topic><topic>quantum circuit depth</topic><topic>quantum circuit synthesis</topic><topic>quantum circuits</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maslov, Dmitri</creatorcontrib><creatorcontrib>Zindorf, Ben</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on quantum engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maslov, Dmitri</au><au>Zindorf, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth Optimization of CZ, CNOT, and Clifford Circuits</atitle><jtitle>IEEE transactions on quantum engineering</jtitle><stitle>TQE</stitle><date>2022</date><risdate>2022</risdate><volume>3</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2689-1808</issn><eissn>2689-1808</eissn><coden>ITQEA9</coden><abstract><![CDATA[We seek to develop better upper bound guarantees on the depth of quantum <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> gate, cnot gate, and Clifford circuits than those reported previously. We focus on the number of qubits <inline-formula><tex-math notation="LaTeX">n\,{\leq }\,</tex-math></inline-formula>1 345 000 (de Brugière et al. , 2021), which represents the most practical use case. Our upper bound on the depth of <inline-formula><tex-math notation="LaTeX">\text {CZ}</tex-math></inline-formula> circuits is <inline-formula><tex-math notation="LaTeX">\lfloor n/2 + 0.4993{\cdot }\log ^{2}(n) + 3.0191{\cdot }\log (n) - 10.9139\rfloor</tex-math></inline-formula>, improving the best-known depth by a factor of roughly 2. We extend the constructions used to prove this upper bound to obtain depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor n + 1.9496{\cdot }\log ^{2}(n) + 3.5075{\cdot }\log (n) - 23.4269 \rfloor</tex-math></inline-formula> for cnot gate circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">4/3</tex-math></inline-formula> over the state of the art, and depth upper bound of <inline-formula><tex-math notation="LaTeX">\lfloor 2n + 2.9487{\cdot }\log ^{2}(n) + 8.4909{\cdot }\log (n) - 44.4798\rfloor</tex-math></inline-formula> for Clifford circuits, offering an improvement by a factor of roughly <inline-formula><tex-math notation="LaTeX">5/3</tex-math></inline-formula>.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TQE.2022.3180900</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8630-3501</orcidid><orcidid>https://orcid.org/0000-0001-7381-4556</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2689-1808 |
ispartof | IEEE transactions on quantum engineering, 2022, Vol.3, p.1-8 |
issn | 2689-1808 2689-1808 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d714fff174434b3b87e350cb22f20e9b |
source | IEEE Xplore Open Access Journals |
subjects | Clifford circuits Color Costs Gates (circuits) Ions Logic gates Optimization Quantum circuit quantum circuit depth quantum circuit synthesis quantum circuits Qubit Qubits (quantum computing) Upper bound Upper bounds |
title | Depth Optimization of CZ, CNOT, and Clifford Circuits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth%20Optimization%20of%20CZ,%20CNOT,%20and%20Clifford%20Circuits&rft.jtitle=IEEE%20transactions%20on%20quantum%20engineering&rft.au=Maslov,%20Dmitri&rft.date=2022&rft.volume=3&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2689-1808&rft.eissn=2689-1808&rft.coden=ITQEA9&rft_id=info:doi/10.1109/TQE.2022.3180900&rft_dat=%3Cproquest_doaj_%3E2681957038%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-29cd267a5faeb7a6de71bbd04ac02bc404cff570214e86ec628cd69840544db13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681957038&rft_id=info:pmid/&rft_ieee_id=9792395&rfr_iscdi=true |