Loading…

Molecular detection and identification of tick-borne bacteria and protozoans in goats and wild Siberian roe deer (Capreolus pygargus) from Heilongjiang Province, northeastern China

Small ruminants are important hosts for various tick species and tick-associated organisms, many of which are zoonotic. The aim of the present study was to determine the presence of tick-borne protozoans and bacteria of public health and veterinary significance in goats and wild Siberian roe deer (C...

Full description

Saved in:
Bibliographic Details
Published in:Parasites & vectors 2019-06, Vol.12 (1), p.296-296, Article 296
Main Authors: Wang, Haoning, Yang, Jifei, Mukhtar, Muhammad Uzair, Liu, Zhijie, Zhang, Minghai, Wang, Xiaolong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Small ruminants are important hosts for various tick species and tick-associated organisms, many of which are zoonotic. The aim of the present study was to determine the presence of tick-borne protozoans and bacteria of public health and veterinary significance in goats and wild Siberian roe deer (Capreolus pygargus) from Heilongjiang Province, northeastern China. The occurrence of piroplasms, Anaplasma phagocytophilum, A. bovis, A. marginale, A. capra, A. ovis, Ehrlichia spp. and spotted fever group rickettsiae was molecularly investigated and analyzed in 134 goats and 9 free ranging C. pygargus living in close proximity. Piroplasm DNA was detected in 16 (11.9%) goats and 5 C. pygargus. Sequence analysis of 18S rRNA sequences identified 3 Theileria species (T. luwenshuni, T. capreoli and T. cervi). Four Anaplasma species (A. ovis, A. phagocytophilum, A. bovis and A. capra) were identified in goats and C. pygargus. Anaplasma ovis and A. bovis were detected in 11 (8.2%) and 6 (4.5%) goats, respectively; A. phagocytophilum, A. bovis and A. capra were found in 3, 7 and 3 C. pygargus, respectively. Sequence analysis of 16S rRNA sequences revealed the presence of 5 different genetic variants of A. bovis in goats and C. pygargus, while the analysis of 16S rRNA and gltA sequence data showed that A. capra isolates identified from C. pygargus were closely related to the genotype identified from sheep and Haemaphysalis qinghaiensis, but differed with the genotype from humans. Anaplasma/Theileria mixed infection was observed in 2 (1.5%) goats and 5 C. pygargus, and co-existence involving potential zoonotic organisms (A. phagocytophilum and A. capra) was found in 2 C. pygargus. All samples were negative for A. marginale, Ehrlichia spp. and SFG rickettsiae. These findings report the tick-borne pathogens in goats and C. pygargus, and a greater diversity of these pathogens were observed in wild animals. Three Theileria (T. luwenshuni, T. capreoli and T. cervi) and four Anaplasma species (A. ovis, A. phagocytophilum, A. bovis and A. capra) with veterinary and medical significance were identified in small domestic and wild ruminants. The contact between wild and domestic animals may increase the potential risk of spread and transmission of tick-borne diseases.
ISSN:1756-3305
1756-3305
DOI:10.1186/s13071-019-3553-1