Loading…

SiameseNet based on multiple instance learning for accurate identification of the histological grade of ICC tumors

BackgroundAfter hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer. Timely and accurate identification of ICC histological grade is critical for guiding clinical diagnosis and treatment planning.MethodWe proposed a dual-branch deep ne...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in oncology 2025-02, Vol.15
Main Authors: Fu, Zhizhan, Feng, Fazhi, He, Xingguang, Li, Tongtong, Li, Xiansong, Ziluo, Jituome, Huang, Zixing, Ye, Jinlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1519-12d9008656686080c730072acc7e911c050e5d94cb8e90f920e06e67e16392113
container_end_page
container_issue
container_start_page
container_title Frontiers in oncology
container_volume 15
creator Fu, Zhizhan
Feng, Fazhi
He, Xingguang
Li, Tongtong
Li, Xiansong
Ziluo, Jituome
Huang, Zixing
Ye, Jinlin
description BackgroundAfter hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer. Timely and accurate identification of ICC histological grade is critical for guiding clinical diagnosis and treatment planning.MethodWe proposed a dual-branch deep neural network (SiameseNet) based on multiple-instance learning and cross-attention mechanisms to address tumor heterogeneity in ICC histological grade prediction. The study included 424 ICC patients (381 in training, 43 in testing). The model integrated imaging data from two modalities through cross-attention, optimizing feature representation for grade classification.ResultsIn the testing cohort, the model achieved an accuracy of 86.0%, AUC of 86.2%, sensitivity of 84.6%, and specificity of 86.7%, demonstrating robust predictive performance.ConclusionThe proposed framework effectively mitigates performance degradation caused by tumor heterogeneity. Its high accuracy and generalizability suggest potential clinical utility in assisting histopathological assessment and personalized treatment planning for ICC patients.
doi_str_mv 10.3389/fonc.2025.1450379
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d726a165933e4f598637621b1d3f8bb8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d726a165933e4f598637621b1d3f8bb8</doaj_id><sourcerecordid>oai_doaj_org_article_d726a165933e4f598637621b1d3f8bb8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1519-12d9008656686080c730072acc7e911c050e5d94cb8e90f920e06e67e16392113</originalsourceid><addsrcrecordid>eNpNkc9OwzAMhysEEtPYA3DLC3Q4SZM2RzTxZ9IEB0DiFqWps2VqmynJDrw9HUwIX2z9LH8-fEVxS2HJeaPuXBjtkgETS1oJ4LW6KGaM8apUFf-8_DdfF4uU9jCVFECBz4r45s2ACV8wk9Yk7EgYyXDssz_0SPyYshktkh5NHP24JS5EYqw9RpOndYdj9s5bk_10FhzJOyQ7n3Low3aKe7KNpsPTZr1akXwcQkw3xZUzfcLFuc-Lj8eH99VzuXl9Wq_uN6WlgqqSsk4BNFJI2UhowNYcoGbT8xoVpRYEoOhUZdsGFTjFAEGirJFKrhilfF6sf7ldMHt9iH4w8UsH4_VPEOJWm5i97VF3NZOGSqE4x8oJ1UheS0Zb2nHXtG0zsegvy8aQUkT3x6OgTw70yYE-OdBnB_wbONZ6FA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SiameseNet based on multiple instance learning for accurate identification of the histological grade of ICC tumors</title><source>PubMed Central</source><creator>Fu, Zhizhan ; Feng, Fazhi ; He, Xingguang ; Li, Tongtong ; Li, Xiansong ; Ziluo, Jituome ; Huang, Zixing ; Ye, Jinlin</creator><creatorcontrib>Fu, Zhizhan ; Feng, Fazhi ; He, Xingguang ; Li, Tongtong ; Li, Xiansong ; Ziluo, Jituome ; Huang, Zixing ; Ye, Jinlin</creatorcontrib><description>BackgroundAfter hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer. Timely and accurate identification of ICC histological grade is critical for guiding clinical diagnosis and treatment planning.MethodWe proposed a dual-branch deep neural network (SiameseNet) based on multiple-instance learning and cross-attention mechanisms to address tumor heterogeneity in ICC histological grade prediction. The study included 424 ICC patients (381 in training, 43 in testing). The model integrated imaging data from two modalities through cross-attention, optimizing feature representation for grade classification.ResultsIn the testing cohort, the model achieved an accuracy of 86.0%, AUC of 86.2%, sensitivity of 84.6%, and specificity of 86.7%, demonstrating robust predictive performance.ConclusionThe proposed framework effectively mitigates performance degradation caused by tumor heterogeneity. Its high accuracy and generalizability suggest potential clinical utility in assisting histopathological assessment and personalized treatment planning for ICC patients.</description><identifier>ISSN: 2234-943X</identifier><identifier>EISSN: 2234-943X</identifier><identifier>DOI: 10.3389/fonc.2025.1450379</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>cross-attention mechanism ; CT-based diagnostics ; histological grade ; intrahepatic cholangiocarcinoma ; multiple instance learning</subject><ispartof>Frontiers in oncology, 2025-02, Vol.15</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1519-12d9008656686080c730072acc7e911c050e5d94cb8e90f920e06e67e16392113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fu, Zhizhan</creatorcontrib><creatorcontrib>Feng, Fazhi</creatorcontrib><creatorcontrib>He, Xingguang</creatorcontrib><creatorcontrib>Li, Tongtong</creatorcontrib><creatorcontrib>Li, Xiansong</creatorcontrib><creatorcontrib>Ziluo, Jituome</creatorcontrib><creatorcontrib>Huang, Zixing</creatorcontrib><creatorcontrib>Ye, Jinlin</creatorcontrib><title>SiameseNet based on multiple instance learning for accurate identification of the histological grade of ICC tumors</title><title>Frontiers in oncology</title><description>BackgroundAfter hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer. Timely and accurate identification of ICC histological grade is critical for guiding clinical diagnosis and treatment planning.MethodWe proposed a dual-branch deep neural network (SiameseNet) based on multiple-instance learning and cross-attention mechanisms to address tumor heterogeneity in ICC histological grade prediction. The study included 424 ICC patients (381 in training, 43 in testing). The model integrated imaging data from two modalities through cross-attention, optimizing feature representation for grade classification.ResultsIn the testing cohort, the model achieved an accuracy of 86.0%, AUC of 86.2%, sensitivity of 84.6%, and specificity of 86.7%, demonstrating robust predictive performance.ConclusionThe proposed framework effectively mitigates performance degradation caused by tumor heterogeneity. Its high accuracy and generalizability suggest potential clinical utility in assisting histopathological assessment and personalized treatment planning for ICC patients.</description><subject>cross-attention mechanism</subject><subject>CT-based diagnostics</subject><subject>histological grade</subject><subject>intrahepatic cholangiocarcinoma</subject><subject>multiple instance learning</subject><issn>2234-943X</issn><issn>2234-943X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkc9OwzAMhysEEtPYA3DLC3Q4SZM2RzTxZ9IEB0DiFqWps2VqmynJDrw9HUwIX2z9LH8-fEVxS2HJeaPuXBjtkgETS1oJ4LW6KGaM8apUFf-8_DdfF4uU9jCVFECBz4r45s2ACV8wk9Yk7EgYyXDssz_0SPyYshktkh5NHP24JS5EYqw9RpOndYdj9s5bk_10FhzJOyQ7n3Low3aKe7KNpsPTZr1akXwcQkw3xZUzfcLFuc-Lj8eH99VzuXl9Wq_uN6WlgqqSsk4BNFJI2UhowNYcoGbT8xoVpRYEoOhUZdsGFTjFAEGirJFKrhilfF6sf7ldMHt9iH4w8UsH4_VPEOJWm5i97VF3NZOGSqE4x8oJ1UheS0Zb2nHXtG0zsegvy8aQUkT3x6OgTw70yYE-OdBnB_wbONZ6FA</recordid><startdate>20250210</startdate><enddate>20250210</enddate><creator>Fu, Zhizhan</creator><creator>Feng, Fazhi</creator><creator>He, Xingguang</creator><creator>Li, Tongtong</creator><creator>Li, Xiansong</creator><creator>Ziluo, Jituome</creator><creator>Huang, Zixing</creator><creator>Ye, Jinlin</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20250210</creationdate><title>SiameseNet based on multiple instance learning for accurate identification of the histological grade of ICC tumors</title><author>Fu, Zhizhan ; Feng, Fazhi ; He, Xingguang ; Li, Tongtong ; Li, Xiansong ; Ziluo, Jituome ; Huang, Zixing ; Ye, Jinlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1519-12d9008656686080c730072acc7e911c050e5d94cb8e90f920e06e67e16392113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>cross-attention mechanism</topic><topic>CT-based diagnostics</topic><topic>histological grade</topic><topic>intrahepatic cholangiocarcinoma</topic><topic>multiple instance learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Zhizhan</creatorcontrib><creatorcontrib>Feng, Fazhi</creatorcontrib><creatorcontrib>He, Xingguang</creatorcontrib><creatorcontrib>Li, Tongtong</creatorcontrib><creatorcontrib>Li, Xiansong</creatorcontrib><creatorcontrib>Ziluo, Jituome</creatorcontrib><creatorcontrib>Huang, Zixing</creatorcontrib><creatorcontrib>Ye, Jinlin</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Zhizhan</au><au>Feng, Fazhi</au><au>He, Xingguang</au><au>Li, Tongtong</au><au>Li, Xiansong</au><au>Ziluo, Jituome</au><au>Huang, Zixing</au><au>Ye, Jinlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SiameseNet based on multiple instance learning for accurate identification of the histological grade of ICC tumors</atitle><jtitle>Frontiers in oncology</jtitle><date>2025-02-10</date><risdate>2025</risdate><volume>15</volume><issn>2234-943X</issn><eissn>2234-943X</eissn><abstract>BackgroundAfter hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer. Timely and accurate identification of ICC histological grade is critical for guiding clinical diagnosis and treatment planning.MethodWe proposed a dual-branch deep neural network (SiameseNet) based on multiple-instance learning and cross-attention mechanisms to address tumor heterogeneity in ICC histological grade prediction. The study included 424 ICC patients (381 in training, 43 in testing). The model integrated imaging data from two modalities through cross-attention, optimizing feature representation for grade classification.ResultsIn the testing cohort, the model achieved an accuracy of 86.0%, AUC of 86.2%, sensitivity of 84.6%, and specificity of 86.7%, demonstrating robust predictive performance.ConclusionThe proposed framework effectively mitigates performance degradation caused by tumor heterogeneity. Its high accuracy and generalizability suggest potential clinical utility in assisting histopathological assessment and personalized treatment planning for ICC patients.</abstract><pub>Frontiers Media S.A</pub><doi>10.3389/fonc.2025.1450379</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2234-943X
ispartof Frontiers in oncology, 2025-02, Vol.15
issn 2234-943X
2234-943X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d726a165933e4f598637621b1d3f8bb8
source PubMed Central
subjects cross-attention mechanism
CT-based diagnostics
histological grade
intrahepatic cholangiocarcinoma
multiple instance learning
title SiameseNet based on multiple instance learning for accurate identification of the histological grade of ICC tumors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SiameseNet%20based%20on%20multiple%20instance%20learning%20for%20accurate%20identification%20of%20the%20histological%20grade%20of%20ICC%20tumors&rft.jtitle=Frontiers%20in%20oncology&rft.au=Fu,%20Zhizhan&rft.date=2025-02-10&rft.volume=15&rft.issn=2234-943X&rft.eissn=2234-943X&rft_id=info:doi/10.3389/fonc.2025.1450379&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_d726a165933e4f598637621b1d3f8bb8%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1519-12d9008656686080c730072acc7e911c050e5d94cb8e90f920e06e67e16392113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true