Loading…
Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanica...
Saved in:
Published in: | Frontiers in bioengineering and biotechnology 2023-04, Vol.11, p.1143304 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73 |
container_end_page | |
container_issue | |
container_start_page | 1143304 |
container_title | Frontiers in bioengineering and biotechnology |
container_volume | 11 |
creator | Kainz, Manuel P Greiner, Alexander Hinrichsen, Jan Kolb, Dagmar Comellas, Ester Steinmann, Paul Budday, Silvia Terzano, Michele Holzapfel, Gerhard A |
description | Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to
porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation. |
doi_str_mv | 10.3389/fbioe.2023.1143304 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7343c47f2ea4841b9a50a79779cf4ba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7343c47f2ea4841b9a50a79779cf4ba</doaj_id><sourcerecordid>2806997779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73</originalsourceid><addsrcrecordid>eNpVkU1P3DAQhq2qVUHAH-BQ5dhLtv5KHJ-qCvUDCQkOVBytsT1eTJN4a2eR-Pf1slsEJ489M8_4nZeQc0ZXQgz6S7Ax4YpTLlaMSSGofEeOOdd9K9nQvX8VH5GzUh4opYx3qhv4R3IkFKNMdeyY3N2knNrHWFzCEcoSXTPBgjnC2Gwgw4T10kSP8xJDdLDENDcpNDZDnJsllrLFdopTdH_ivG7un3xOaxzLKfkQYCx4djhPyO8f328vfrVX1z8vL75dtU72emmR-9C7nvXKCqo6qgY5WM2488G5YGWQKnDfS4e-Z9oNjEpnpbJYBXsWlDghl3uuT_BgNjlOkJ9MgmieH1JeG8hV1YjGKyGF2wER5CCZ1dBRUFop7YK0UFlf96zN1k7oXdWcYXwDfZuZ471Zp0dTl8kF16ISPh8IOf3dYlnMVDeL4wgzpm0xfKC9rgOVrqV8X-pyKiVjeJnDqNk5bJ4dNjuHzcHh2vTp9Q9fWv77Kf4B9vClKg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806997779</pqid></control><display><type>article</type><title>Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels</title><source>PubMed Central</source><creator>Kainz, Manuel P ; Greiner, Alexander ; Hinrichsen, Jan ; Kolb, Dagmar ; Comellas, Ester ; Steinmann, Paul ; Budday, Silvia ; Terzano, Michele ; Holzapfel, Gerhard A</creator><creatorcontrib>Kainz, Manuel P ; Greiner, Alexander ; Hinrichsen, Jan ; Kolb, Dagmar ; Comellas, Ester ; Steinmann, Paul ; Budday, Silvia ; Terzano, Michele ; Holzapfel, Gerhard A</creatorcontrib><description>Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to
porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation.</description><identifier>ISSN: 2296-4185</identifier><identifier>EISSN: 2296-4185</identifier><identifier>DOI: 10.3389/fbioe.2023.1143304</identifier><identifier>PMID: 37101751</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Bioengineering and Biotechnology ; biomechanical testing ; brain tissue ; hydrogel ; indentation ; parameter identification ; polyvinyl alcohol</subject><ispartof>Frontiers in bioengineering and biotechnology, 2023-04, Vol.11, p.1143304</ispartof><rights>Copyright © 2023 Kainz, Greiner, Hinrichsen, Kolb, Comellas, Steinmann, Budday, Terzano and Holzapfel.</rights><rights>Copyright © 2023 Kainz, Greiner, Hinrichsen, Kolb, Comellas, Steinmann, Budday, Terzano and Holzapfel. 2023 Kainz, Greiner, Hinrichsen, Kolb, Comellas, Steinmann, Budday, Terzano and Holzapfel</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73</citedby><cites>FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123293/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123293/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37101751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kainz, Manuel P</creatorcontrib><creatorcontrib>Greiner, Alexander</creatorcontrib><creatorcontrib>Hinrichsen, Jan</creatorcontrib><creatorcontrib>Kolb, Dagmar</creatorcontrib><creatorcontrib>Comellas, Ester</creatorcontrib><creatorcontrib>Steinmann, Paul</creatorcontrib><creatorcontrib>Budday, Silvia</creatorcontrib><creatorcontrib>Terzano, Michele</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A</creatorcontrib><title>Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels</title><title>Frontiers in bioengineering and biotechnology</title><addtitle>Front Bioeng Biotechnol</addtitle><description>Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to
porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation.</description><subject>Bioengineering and Biotechnology</subject><subject>biomechanical testing</subject><subject>brain tissue</subject><subject>hydrogel</subject><subject>indentation</subject><subject>parameter identification</subject><subject>polyvinyl alcohol</subject><issn>2296-4185</issn><issn>2296-4185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1P3DAQhq2qVUHAH-BQ5dhLtv5KHJ-qCvUDCQkOVBytsT1eTJN4a2eR-Pf1slsEJ489M8_4nZeQc0ZXQgz6S7Ax4YpTLlaMSSGofEeOOdd9K9nQvX8VH5GzUh4opYx3qhv4R3IkFKNMdeyY3N2knNrHWFzCEcoSXTPBgjnC2Gwgw4T10kSP8xJDdLDENDcpNDZDnJsllrLFdopTdH_ivG7un3xOaxzLKfkQYCx4djhPyO8f328vfrVX1z8vL75dtU72emmR-9C7nvXKCqo6qgY5WM2488G5YGWQKnDfS4e-Z9oNjEpnpbJYBXsWlDghl3uuT_BgNjlOkJ9MgmieH1JeG8hV1YjGKyGF2wER5CCZ1dBRUFop7YK0UFlf96zN1k7oXdWcYXwDfZuZ471Zp0dTl8kF16ISPh8IOf3dYlnMVDeL4wgzpm0xfKC9rgOVrqV8X-pyKiVjeJnDqNk5bJ4dNjuHzcHh2vTp9Q9fWv77Kf4B9vClKg</recordid><startdate>20230410</startdate><enddate>20230410</enddate><creator>Kainz, Manuel P</creator><creator>Greiner, Alexander</creator><creator>Hinrichsen, Jan</creator><creator>Kolb, Dagmar</creator><creator>Comellas, Ester</creator><creator>Steinmann, Paul</creator><creator>Budday, Silvia</creator><creator>Terzano, Michele</creator><creator>Holzapfel, Gerhard A</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230410</creationdate><title>Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels</title><author>Kainz, Manuel P ; Greiner, Alexander ; Hinrichsen, Jan ; Kolb, Dagmar ; Comellas, Ester ; Steinmann, Paul ; Budday, Silvia ; Terzano, Michele ; Holzapfel, Gerhard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioengineering and Biotechnology</topic><topic>biomechanical testing</topic><topic>brain tissue</topic><topic>hydrogel</topic><topic>indentation</topic><topic>parameter identification</topic><topic>polyvinyl alcohol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kainz, Manuel P</creatorcontrib><creatorcontrib>Greiner, Alexander</creatorcontrib><creatorcontrib>Hinrichsen, Jan</creatorcontrib><creatorcontrib>Kolb, Dagmar</creatorcontrib><creatorcontrib>Comellas, Ester</creatorcontrib><creatorcontrib>Steinmann, Paul</creatorcontrib><creatorcontrib>Budday, Silvia</creatorcontrib><creatorcontrib>Terzano, Michele</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in bioengineering and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kainz, Manuel P</au><au>Greiner, Alexander</au><au>Hinrichsen, Jan</au><au>Kolb, Dagmar</au><au>Comellas, Ester</au><au>Steinmann, Paul</au><au>Budday, Silvia</au><au>Terzano, Michele</au><au>Holzapfel, Gerhard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels</atitle><jtitle>Frontiers in bioengineering and biotechnology</jtitle><addtitle>Front Bioeng Biotechnol</addtitle><date>2023-04-10</date><risdate>2023</risdate><volume>11</volume><spage>1143304</spage><pages>1143304-</pages><issn>2296-4185</issn><eissn>2296-4185</eissn><abstract>Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to
porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>37101751</pmid><doi>10.3389/fbioe.2023.1143304</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-4185 |
ispartof | Frontiers in bioengineering and biotechnology, 2023-04, Vol.11, p.1143304 |
issn | 2296-4185 2296-4185 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d7343c47f2ea4841b9a50a79779cf4ba |
source | PubMed Central |
subjects | Bioengineering and Biotechnology biomechanical testing brain tissue hydrogel indentation parameter identification polyvinyl alcohol |
title | Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poro-viscoelastic%20material%20parameter%20identification%20of%20brain%20tissue-mimicking%20hydrogels&rft.jtitle=Frontiers%20in%20bioengineering%20and%20biotechnology&rft.au=Kainz,%20Manuel%20P&rft.date=2023-04-10&rft.volume=11&rft.spage=1143304&rft.pages=1143304-&rft.issn=2296-4185&rft.eissn=2296-4185&rft_id=info:doi/10.3389/fbioe.2023.1143304&rft_dat=%3Cproquest_doaj_%3E2806997779%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806997779&rft_id=info:pmid/37101751&rfr_iscdi=true |