Loading…

Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels

Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanica...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in bioengineering and biotechnology 2023-04, Vol.11, p.1143304
Main Authors: Kainz, Manuel P, Greiner, Alexander, Hinrichsen, Jan, Kolb, Dagmar, Comellas, Ester, Steinmann, Paul, Budday, Silvia, Terzano, Michele, Holzapfel, Gerhard A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73
cites cdi_FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73
container_end_page
container_issue
container_start_page 1143304
container_title Frontiers in bioengineering and biotechnology
container_volume 11
creator Kainz, Manuel P
Greiner, Alexander
Hinrichsen, Jan
Kolb, Dagmar
Comellas, Ester
Steinmann, Paul
Budday, Silvia
Terzano, Michele
Holzapfel, Gerhard A
description Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation.
doi_str_mv 10.3389/fbioe.2023.1143304
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7343c47f2ea4841b9a50a79779cf4ba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7343c47f2ea4841b9a50a79779cf4ba</doaj_id><sourcerecordid>2806997779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73</originalsourceid><addsrcrecordid>eNpVkU1P3DAQhq2qVUHAH-BQ5dhLtv5KHJ-qCvUDCQkOVBytsT1eTJN4a2eR-Pf1slsEJ489M8_4nZeQc0ZXQgz6S7Ax4YpTLlaMSSGofEeOOdd9K9nQvX8VH5GzUh4opYx3qhv4R3IkFKNMdeyY3N2knNrHWFzCEcoSXTPBgjnC2Gwgw4T10kSP8xJDdLDENDcpNDZDnJsllrLFdopTdH_ivG7un3xOaxzLKfkQYCx4djhPyO8f328vfrVX1z8vL75dtU72emmR-9C7nvXKCqo6qgY5WM2488G5YGWQKnDfS4e-Z9oNjEpnpbJYBXsWlDghl3uuT_BgNjlOkJ9MgmieH1JeG8hV1YjGKyGF2wER5CCZ1dBRUFop7YK0UFlf96zN1k7oXdWcYXwDfZuZ471Zp0dTl8kF16ISPh8IOf3dYlnMVDeL4wgzpm0xfKC9rgOVrqV8X-pyKiVjeJnDqNk5bJ4dNjuHzcHh2vTp9Q9fWv77Kf4B9vClKg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806997779</pqid></control><display><type>article</type><title>Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels</title><source>PubMed Central</source><creator>Kainz, Manuel P ; Greiner, Alexander ; Hinrichsen, Jan ; Kolb, Dagmar ; Comellas, Ester ; Steinmann, Paul ; Budday, Silvia ; Terzano, Michele ; Holzapfel, Gerhard A</creator><creatorcontrib>Kainz, Manuel P ; Greiner, Alexander ; Hinrichsen, Jan ; Kolb, Dagmar ; Comellas, Ester ; Steinmann, Paul ; Budday, Silvia ; Terzano, Michele ; Holzapfel, Gerhard A</creatorcontrib><description>Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation.</description><identifier>ISSN: 2296-4185</identifier><identifier>EISSN: 2296-4185</identifier><identifier>DOI: 10.3389/fbioe.2023.1143304</identifier><identifier>PMID: 37101751</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Bioengineering and Biotechnology ; biomechanical testing ; brain tissue ; hydrogel ; indentation ; parameter identification ; polyvinyl alcohol</subject><ispartof>Frontiers in bioengineering and biotechnology, 2023-04, Vol.11, p.1143304</ispartof><rights>Copyright © 2023 Kainz, Greiner, Hinrichsen, Kolb, Comellas, Steinmann, Budday, Terzano and Holzapfel.</rights><rights>Copyright © 2023 Kainz, Greiner, Hinrichsen, Kolb, Comellas, Steinmann, Budday, Terzano and Holzapfel. 2023 Kainz, Greiner, Hinrichsen, Kolb, Comellas, Steinmann, Budday, Terzano and Holzapfel</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73</citedby><cites>FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123293/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123293/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37101751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kainz, Manuel P</creatorcontrib><creatorcontrib>Greiner, Alexander</creatorcontrib><creatorcontrib>Hinrichsen, Jan</creatorcontrib><creatorcontrib>Kolb, Dagmar</creatorcontrib><creatorcontrib>Comellas, Ester</creatorcontrib><creatorcontrib>Steinmann, Paul</creatorcontrib><creatorcontrib>Budday, Silvia</creatorcontrib><creatorcontrib>Terzano, Michele</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A</creatorcontrib><title>Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels</title><title>Frontiers in bioengineering and biotechnology</title><addtitle>Front Bioeng Biotechnol</addtitle><description>Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation.</description><subject>Bioengineering and Biotechnology</subject><subject>biomechanical testing</subject><subject>brain tissue</subject><subject>hydrogel</subject><subject>indentation</subject><subject>parameter identification</subject><subject>polyvinyl alcohol</subject><issn>2296-4185</issn><issn>2296-4185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1P3DAQhq2qVUHAH-BQ5dhLtv5KHJ-qCvUDCQkOVBytsT1eTJN4a2eR-Pf1slsEJ489M8_4nZeQc0ZXQgz6S7Ax4YpTLlaMSSGofEeOOdd9K9nQvX8VH5GzUh4opYx3qhv4R3IkFKNMdeyY3N2knNrHWFzCEcoSXTPBgjnC2Gwgw4T10kSP8xJDdLDENDcpNDZDnJsllrLFdopTdH_ivG7un3xOaxzLKfkQYCx4djhPyO8f328vfrVX1z8vL75dtU72emmR-9C7nvXKCqo6qgY5WM2488G5YGWQKnDfS4e-Z9oNjEpnpbJYBXsWlDghl3uuT_BgNjlOkJ9MgmieH1JeG8hV1YjGKyGF2wER5CCZ1dBRUFop7YK0UFlf96zN1k7oXdWcYXwDfZuZ471Zp0dTl8kF16ISPh8IOf3dYlnMVDeL4wgzpm0xfKC9rgOVrqV8X-pyKiVjeJnDqNk5bJ4dNjuHzcHh2vTp9Q9fWv77Kf4B9vClKg</recordid><startdate>20230410</startdate><enddate>20230410</enddate><creator>Kainz, Manuel P</creator><creator>Greiner, Alexander</creator><creator>Hinrichsen, Jan</creator><creator>Kolb, Dagmar</creator><creator>Comellas, Ester</creator><creator>Steinmann, Paul</creator><creator>Budday, Silvia</creator><creator>Terzano, Michele</creator><creator>Holzapfel, Gerhard A</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230410</creationdate><title>Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels</title><author>Kainz, Manuel P ; Greiner, Alexander ; Hinrichsen, Jan ; Kolb, Dagmar ; Comellas, Ester ; Steinmann, Paul ; Budday, Silvia ; Terzano, Michele ; Holzapfel, Gerhard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioengineering and Biotechnology</topic><topic>biomechanical testing</topic><topic>brain tissue</topic><topic>hydrogel</topic><topic>indentation</topic><topic>parameter identification</topic><topic>polyvinyl alcohol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kainz, Manuel P</creatorcontrib><creatorcontrib>Greiner, Alexander</creatorcontrib><creatorcontrib>Hinrichsen, Jan</creatorcontrib><creatorcontrib>Kolb, Dagmar</creatorcontrib><creatorcontrib>Comellas, Ester</creatorcontrib><creatorcontrib>Steinmann, Paul</creatorcontrib><creatorcontrib>Budday, Silvia</creatorcontrib><creatorcontrib>Terzano, Michele</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in bioengineering and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kainz, Manuel P</au><au>Greiner, Alexander</au><au>Hinrichsen, Jan</au><au>Kolb, Dagmar</au><au>Comellas, Ester</au><au>Steinmann, Paul</au><au>Budday, Silvia</au><au>Terzano, Michele</au><au>Holzapfel, Gerhard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels</atitle><jtitle>Frontiers in bioengineering and biotechnology</jtitle><addtitle>Front Bioeng Biotechnol</addtitle><date>2023-04-10</date><risdate>2023</risdate><volume>11</volume><spage>1143304</spage><pages>1143304-</pages><issn>2296-4185</issn><eissn>2296-4185</eissn><abstract>Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>37101751</pmid><doi>10.3389/fbioe.2023.1143304</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-4185
ispartof Frontiers in bioengineering and biotechnology, 2023-04, Vol.11, p.1143304
issn 2296-4185
2296-4185
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d7343c47f2ea4841b9a50a79779cf4ba
source PubMed Central
subjects Bioengineering and Biotechnology
biomechanical testing
brain tissue
hydrogel
indentation
parameter identification
polyvinyl alcohol
title Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poro-viscoelastic%20material%20parameter%20identification%20of%20brain%20tissue-mimicking%20hydrogels&rft.jtitle=Frontiers%20in%20bioengineering%20and%20biotechnology&rft.au=Kainz,%20Manuel%20P&rft.date=2023-04-10&rft.volume=11&rft.spage=1143304&rft.pages=1143304-&rft.issn=2296-4185&rft.eissn=2296-4185&rft_id=info:doi/10.3389/fbioe.2023.1143304&rft_dat=%3Cproquest_doaj_%3E2806997779%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-e2df6c6167b307507848b912cdfccfb4f47f2d64ced619c8104cb47be330d1f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806997779&rft_id=info:pmid/37101751&rfr_iscdi=true