Loading…

Impact of Aerosol Mixing State and Hygroscopicity on the Lidar Ratio

The lidar ratio (LR) is a key parameter for the retrieval of atmospheric optical parameters from lidar equations. In this study, we simulated the optical parameters to investigate the impact factors of the LR using a three-component optical aerosol assumption based on the Mie model. The simulated LR...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-04, Vol.14 (7), p.1554
Main Authors: Zhang, Zhijie, Liu, Li, Wang, Baomin, Tan, Haobo, Lan, Changxing, Wang, Ye, Chan, Pakwai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-33b4a947b5576b253f457f56b8307136c9d0b7a83acb447d074d23cb91668e363
cites cdi_FETCH-LOGICAL-c361t-33b4a947b5576b253f457f56b8307136c9d0b7a83acb447d074d23cb91668e363
container_end_page
container_issue 7
container_start_page 1554
container_title Remote sensing (Basel, Switzerland)
container_volume 14
creator Zhang, Zhijie
Liu, Li
Wang, Baomin
Tan, Haobo
Lan, Changxing
Wang, Ye
Chan, Pakwai
description The lidar ratio (LR) is a key parameter for the retrieval of atmospheric optical parameters from lidar equations. In this study, we simulated the optical parameters to investigate the impact factors of the LR using a three-component optical aerosol assumption based on the Mie model. The simulated LR was generally related to the overall particle size of the aerosols, the proportion of elemental carbon (EC), as well as aerosol mixing states and hygroscopicity. The LR was positively correlated with the particle size and volume fraction of elemental carbon (fEC). The LR increased more than three-fold with the increase in fEC from 0% to 40%. The LR of the core-shell (CS) mixing state and homogeneously internal (INT) mixing state was greater than that of the external (EXT) mixing state. The LR of all mixing states increased monotonically with hygroscopicity when the fEC was below 10%, while the LR of the core-shell mixing state (homogeneously internal mixing state) initially decreased (increased) and then increased (decreased) with increasing hygroscopicity when the fEC was more than 20%. These results will help in selecting a reasonable LR for practical applications.
doi_str_mv 10.3390/rs14071554
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d74c4f224fa8429bab9d8a8591b36b07</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d74c4f224fa8429bab9d8a8591b36b07</doaj_id><sourcerecordid>2649089935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-33b4a947b5576b253f457f56b8307136c9d0b7a83acb447d074d23cb91668e363</originalsourceid><addsrcrecordid>eNpNUNtKAzEQXUTBUvviFwR8E1azmVw2j6VeWqgIXp5DLrs1pd2s2RTs3xutqPMyw8zhnDOnKM4rfAUg8XUcKopFxRg9KkYEC1JSIsnxv_m0mAzDGucCqCSmo-Jmse21TSi0aNrEMIQNevAfvluh56RTg3Tn0Hy_yhcbem992qPQofTWoKV3OqInnXw4K05avRmayU8fF693ty-zebl8vF_MpsvSAq9SCWCollQYxgQ3hEFLmWgZNzVk28CtdNgIXYO2hlLhsKCOgDWy4rxugMO4WBx4XdBr1Ue_1XGvgvbqexHiSumYvN00yglqaUsIbXWdPzfaSFfrmsnKADdYZK6LA1cfw_uuGZJah13ssn1FOJW4lhJYRl0eUDYnMMSm_VWtsPoKXf2FDp9DgXEh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649089935</pqid></control><display><type>article</type><title>Impact of Aerosol Mixing State and Hygroscopicity on the Lidar Ratio</title><source>Publicly Available Content (ProQuest)</source><creator>Zhang, Zhijie ; Liu, Li ; Wang, Baomin ; Tan, Haobo ; Lan, Changxing ; Wang, Ye ; Chan, Pakwai</creator><creatorcontrib>Zhang, Zhijie ; Liu, Li ; Wang, Baomin ; Tan, Haobo ; Lan, Changxing ; Wang, Ye ; Chan, Pakwai</creatorcontrib><description>The lidar ratio (LR) is a key parameter for the retrieval of atmospheric optical parameters from lidar equations. In this study, we simulated the optical parameters to investigate the impact factors of the LR using a three-component optical aerosol assumption based on the Mie model. The simulated LR was generally related to the overall particle size of the aerosols, the proportion of elemental carbon (EC), as well as aerosol mixing states and hygroscopicity. The LR was positively correlated with the particle size and volume fraction of elemental carbon (fEC). The LR increased more than three-fold with the increase in fEC from 0% to 40%. The LR of the core-shell (CS) mixing state and homogeneously internal (INT) mixing state was greater than that of the external (EXT) mixing state. The LR of all mixing states increased monotonically with hygroscopicity when the fEC was below 10%, while the LR of the core-shell mixing state (homogeneously internal mixing state) initially decreased (increased) and then increased (decreased) with increasing hygroscopicity when the fEC was more than 20%. These results will help in selecting a reasonable LR for practical applications.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs14071554</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerosols ; Atmospheric aerosols ; Atmospheric boundary layer ; Carbon ; Dust ; Humidity ; hygroscopic growth ; Hygroscopicity ; Lidar ; lidar ratio ; Mie model ; mixing state ; Optical properties ; Parameters ; Particle size ; Remote sensing</subject><ispartof>Remote sensing (Basel, Switzerland), 2022-04, Vol.14 (7), p.1554</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-33b4a947b5576b253f457f56b8307136c9d0b7a83acb447d074d23cb91668e363</citedby><cites>FETCH-LOGICAL-c361t-33b4a947b5576b253f457f56b8307136c9d0b7a83acb447d074d23cb91668e363</cites><orcidid>0000-0002-5518-7285 ; 0000-0002-6093-0571 ; 0000-0001-8005-4524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2649089935/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2649089935?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhang, Zhijie</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Wang, Baomin</creatorcontrib><creatorcontrib>Tan, Haobo</creatorcontrib><creatorcontrib>Lan, Changxing</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Chan, Pakwai</creatorcontrib><title>Impact of Aerosol Mixing State and Hygroscopicity on the Lidar Ratio</title><title>Remote sensing (Basel, Switzerland)</title><description>The lidar ratio (LR) is a key parameter for the retrieval of atmospheric optical parameters from lidar equations. In this study, we simulated the optical parameters to investigate the impact factors of the LR using a three-component optical aerosol assumption based on the Mie model. The simulated LR was generally related to the overall particle size of the aerosols, the proportion of elemental carbon (EC), as well as aerosol mixing states and hygroscopicity. The LR was positively correlated with the particle size and volume fraction of elemental carbon (fEC). The LR increased more than three-fold with the increase in fEC from 0% to 40%. The LR of the core-shell (CS) mixing state and homogeneously internal (INT) mixing state was greater than that of the external (EXT) mixing state. The LR of all mixing states increased monotonically with hygroscopicity when the fEC was below 10%, while the LR of the core-shell mixing state (homogeneously internal mixing state) initially decreased (increased) and then increased (decreased) with increasing hygroscopicity when the fEC was more than 20%. These results will help in selecting a reasonable LR for practical applications.</description><subject>Aerosols</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric boundary layer</subject><subject>Carbon</subject><subject>Dust</subject><subject>Humidity</subject><subject>hygroscopic growth</subject><subject>Hygroscopicity</subject><subject>Lidar</subject><subject>lidar ratio</subject><subject>Mie model</subject><subject>mixing state</subject><subject>Optical properties</subject><subject>Parameters</subject><subject>Particle size</subject><subject>Remote sensing</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUNtKAzEQXUTBUvviFwR8E1azmVw2j6VeWqgIXp5DLrs1pd2s2RTs3xutqPMyw8zhnDOnKM4rfAUg8XUcKopFxRg9KkYEC1JSIsnxv_m0mAzDGucCqCSmo-Jmse21TSi0aNrEMIQNevAfvluh56RTg3Tn0Hy_yhcbem992qPQofTWoKV3OqInnXw4K05avRmayU8fF693ty-zebl8vF_MpsvSAq9SCWCollQYxgQ3hEFLmWgZNzVk28CtdNgIXYO2hlLhsKCOgDWy4rxugMO4WBx4XdBr1Ue_1XGvgvbqexHiSumYvN00yglqaUsIbXWdPzfaSFfrmsnKADdYZK6LA1cfw_uuGZJah13ssn1FOJW4lhJYRl0eUDYnMMSm_VWtsPoKXf2FDp9DgXEh</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhang, Zhijie</creator><creator>Liu, Li</creator><creator>Wang, Baomin</creator><creator>Tan, Haobo</creator><creator>Lan, Changxing</creator><creator>Wang, Ye</creator><creator>Chan, Pakwai</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5518-7285</orcidid><orcidid>https://orcid.org/0000-0002-6093-0571</orcidid><orcidid>https://orcid.org/0000-0001-8005-4524</orcidid></search><sort><creationdate>20220401</creationdate><title>Impact of Aerosol Mixing State and Hygroscopicity on the Lidar Ratio</title><author>Zhang, Zhijie ; Liu, Li ; Wang, Baomin ; Tan, Haobo ; Lan, Changxing ; Wang, Ye ; Chan, Pakwai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-33b4a947b5576b253f457f56b8307136c9d0b7a83acb447d074d23cb91668e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerosols</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric boundary layer</topic><topic>Carbon</topic><topic>Dust</topic><topic>Humidity</topic><topic>hygroscopic growth</topic><topic>Hygroscopicity</topic><topic>Lidar</topic><topic>lidar ratio</topic><topic>Mie model</topic><topic>mixing state</topic><topic>Optical properties</topic><topic>Parameters</topic><topic>Particle size</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhijie</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Wang, Baomin</creatorcontrib><creatorcontrib>Tan, Haobo</creatorcontrib><creatorcontrib>Lan, Changxing</creatorcontrib><creatorcontrib>Wang, Ye</creatorcontrib><creatorcontrib>Chan, Pakwai</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhijie</au><au>Liu, Li</au><au>Wang, Baomin</au><au>Tan, Haobo</au><au>Lan, Changxing</au><au>Wang, Ye</au><au>Chan, Pakwai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Aerosol Mixing State and Hygroscopicity on the Lidar Ratio</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>14</volume><issue>7</issue><spage>1554</spage><pages>1554-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The lidar ratio (LR) is a key parameter for the retrieval of atmospheric optical parameters from lidar equations. In this study, we simulated the optical parameters to investigate the impact factors of the LR using a three-component optical aerosol assumption based on the Mie model. The simulated LR was generally related to the overall particle size of the aerosols, the proportion of elemental carbon (EC), as well as aerosol mixing states and hygroscopicity. The LR was positively correlated with the particle size and volume fraction of elemental carbon (fEC). The LR increased more than three-fold with the increase in fEC from 0% to 40%. The LR of the core-shell (CS) mixing state and homogeneously internal (INT) mixing state was greater than that of the external (EXT) mixing state. The LR of all mixing states increased monotonically with hygroscopicity when the fEC was below 10%, while the LR of the core-shell mixing state (homogeneously internal mixing state) initially decreased (increased) and then increased (decreased) with increasing hygroscopicity when the fEC was more than 20%. These results will help in selecting a reasonable LR for practical applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs14071554</doi><orcidid>https://orcid.org/0000-0002-5518-7285</orcidid><orcidid>https://orcid.org/0000-0002-6093-0571</orcidid><orcidid>https://orcid.org/0000-0001-8005-4524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2022-04, Vol.14 (7), p.1554
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d74c4f224fa8429bab9d8a8591b36b07
source Publicly Available Content (ProQuest)
subjects Aerosols
Atmospheric aerosols
Atmospheric boundary layer
Carbon
Dust
Humidity
hygroscopic growth
Hygroscopicity
Lidar
lidar ratio
Mie model
mixing state
Optical properties
Parameters
Particle size
Remote sensing
title Impact of Aerosol Mixing State and Hygroscopicity on the Lidar Ratio
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Aerosol%20Mixing%20State%20and%20Hygroscopicity%20on%20the%20Lidar%20Ratio&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Zhang,%20Zhijie&rft.date=2022-04-01&rft.volume=14&rft.issue=7&rft.spage=1554&rft.pages=1554-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs14071554&rft_dat=%3Cproquest_doaj_%3E2649089935%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-33b4a947b5576b253f457f56b8307136c9d0b7a83acb447d074d23cb91668e363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649089935&rft_id=info:pmid/&rfr_iscdi=true