Loading…

Antibiofilm and antithrombotic hydrogel coating based on superhydrophilic zwitterionic carboxymethyl chitosan for blood-contacting devices

Blood-contacting devices must be designed to minimize the risk of bloodstream-associated infections, thrombosis, and intimal lesions caused by surface friction. However, achieving effective prevention of both bloodstream-associated infections and thrombosis poses a challenge due to the conflicting n...

Full description

Saved in:
Bibliographic Details
Published in:Bioactive materials 2024-04, Vol.34, p.112-124
Main Authors: Lee, Dong Uk, Kayumov, Mukhammad, Park, Junghun, Park, Se Kye, Kang, Yeongkwon, Ahn, Yejin, Kim, Woojin, Yoo, Seung Hwa, Park, Jun-Kyu, Kim, Bong-Gi, Oh, Yong Suk, Jeong, In-Seok, Choi, Dong Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Blood-contacting devices must be designed to minimize the risk of bloodstream-associated infections, thrombosis, and intimal lesions caused by surface friction. However, achieving effective prevention of both bloodstream-associated infections and thrombosis poses a challenge due to the conflicting nature of antibacterial and antithrombotic activities, specifically regarding electrostatic interactions. This study introduced a novel biocompatible hydrogel of sodium alginate and zwitterionic carboxymethyl chitosan (ZW@CMC) with antibacterial and antithrombotic activities for use in catheters. The ZW@CMC hydrogel demonstrates a superhydrophilic surface and good hygroscopic properties, which facilitate the formation of a stable hydration layer with low friction. The zwitterionic-functionalized CMC incorporates an additional negative sulfone group and increased negative charge density in the carboxyl group. This augmentation enhances electrostatic repulsion and facilitates the formation of hydration layer. This leads to exceptional prevention of blood clotting factor adhesion and inhibition of biofilm formation. Subsequently, the ZW@CMC hydrogel exhibited biocompatibility with tests of in vitro cytotoxicity, hemolysis, and catheter friction. Furthermore, in vivo tests of antithrombotic and systemic inflammation models with catheterization indicated that ZW@CMC has significant advantages for practical applications in cardiovascular-related and sepsis treatment. This study opens a new avenue for the development of chitosan-based multifunctional hydrogel for applications in blood-contacting devices. [Display omitted] •Zwitterionic carboxymethyl chitosan hydrogel was fabricated via water-based process.•Zwitterionic hydrogel improved the antimicrobial and antithrombotic performance.•Zwitterionic functionalization enhanced electrostatic repulsion for antifouling.•The hydrogel shows superior prevention of blood clotting in vivo catheterization test.•The Hydrogel coating supported sepsis curing by bacterial killing in sepsis model.
ISSN:2452-199X
2452-199X
DOI:10.1016/j.bioactmat.2023.12.009