Loading…

Evaluating cutinase from Fusarium oxysporum as a biocatalyst for the degradation of nine synthetic polymer

Plastic poses a significant environmental impact due to its chemical resilience, leading to prolonged and degradation times and resulting in widespread adverse effects on global flora and fauna. Cutinases are essential enzymes in the biodegradation process of synthetic polymers like polyethylene ter...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2025-01, Vol.15 (1), p.2887-18, Article 2887
Main Authors: de Oliveira, Maycon Vinicius Damasceno, Calandrini, Gabriel, da Costa, Clauber Henrique Souza, da Silva de Souza, Carlos Gabriel, Alves, Cláudio Nahum, Silva, José Rogério A., Lima, Anderson H., Lameira, Jerônimo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-7321a5bc87d4db1d2c05d1d6fe86164796aee8a318fe70f828d99ace1f098b0f3
container_end_page 18
container_issue 1
container_start_page 2887
container_title Scientific reports
container_volume 15
creator de Oliveira, Maycon Vinicius Damasceno
Calandrini, Gabriel
da Costa, Clauber Henrique Souza
da Silva de Souza, Carlos Gabriel
Alves, Cláudio Nahum
Silva, José Rogério A.
Lima, Anderson H.
Lameira, Jerônimo
description Plastic poses a significant environmental impact due to its chemical resilience, leading to prolonged and degradation times and resulting in widespread adverse effects on global flora and fauna. Cutinases are essential enzymes in the biodegradation process of synthetic polymers like polyethylene terephthalate (PET), which recognized organisms can break down. Here, we used molecular dynamics and binding free energy calculations to explore the interaction of nine synthetic polymers, including PET, with Cutinase from Fusarium oxysporum ( Fo Cut). According to our findings, the polymers poly(ethylene terephthalate) (PET), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT) and poly(ε-caprolactone) (PCL) can bind to the Cutinase enzyme from  F. oxysporum , indicating potential biodegradation activity for these polymers. PET exhibited the highest binding affinity (− 34.26 kcal/mol). Besides PET, the polymers PHBH, PBS, PBAT, and PCL also demonstrated significant affinities for the Fo Cut enzyme, with binding values of − 18.44, − 29.71, − 22.78, and − 22.26 kcal/mol, respectively. Additionally, analysis of the phylogenetic tree of cutinases produced by different organisms demonstrated that even though the organisms belong to different kingdoms, the cutinase from F. oxysporum  ( Fo Cut) showed biological similarity in its activity in degrading polymers with the cutinase enzyme from the bacterium Kineococcus radiotolerans  and the fungus  Moniliophthora roreri . Furthermore, the phylogenetic analysis demonstrated that the PETase enzyme has a very high similarity with the bacterial cutinase enzyme than with the fungal cutinase, therefore demonstrating that the PETase enzyme from Ideonella sakaiensis can easily be a modified bacterial cutinase enzyme that created a unique feature in biodegrading only the pet polymer through an evolutionary process due to its environment and its biochemical need for carbon. Our data demonstrate that bacterial cutinase enzymes have the same common ancestor as the PETase enzyme. Therefore, cutinases and PETase are interconnected through their biological similarity in biodegrading polymers. We demonstrated that important conserved regions, such as the Ser-Asp-His catalytic triad, exist in the enzyme’s catalytic site and that all Cut enzymes from different organisms have the same region to couple with the polymer structures.
doi_str_mv 10.1038/s41598-024-84718-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d797fa54e37746c9b62974a9859841b8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d797fa54e37746c9b62974a9859841b8</doaj_id><sourcerecordid>3158763241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-7321a5bc87d4db1d2c05d1d6fe86164796aee8a318fe70f828d99ace1f098b0f3</originalsourceid><addsrcrecordid>eNp9ks1u1TAQhSMEolXpC7BAltiwCfgvsb1CqGqhUiU2sLYm9vg2V0l8sZOKvD3mppSWBd7MyHPm83h0quo1o-8ZFfpDlqwxuqZc1loqVrJn1Smnsqm54Pz5o_ykOs95T8tpuJHMvKxOhNFSaKNOq_3lHQwLzP20I24pATKSkOJIrpYMqV9GEn-u-RBTySATIF0fHcwwrHkmISYy3yLxuEvgCyVOJAYy9ROSvE6lNPeOHOKwjpheVS8CDBnP7-NZ9f3q8tvFl_rm6-fri083tZOcz7USnEHTOa289B3z3NHGM98G1C1rpTItIGoQTAdUNGiuvTHgkAVqdEeDOKuuN66PsLeH1I-QVhuht8eLmHYWUplrQOuVUQEaiUIp2TrTtdwoCUaX1UrW6cL6uLEOSzeidzjNCYYn0KeVqb-1u3hnGVONlFwWwrt7Qoo_FsyzHfvscBhgwrhkK1ijVSu4ZEX69h_pPi5pKrs6qrjUgomi4pvKpZhzwvAwDaP2tzXsZg1brGGP1rC0NL15_I-Hlj9GKAKxCXIpTTtMf9_-D_YX1TnFrg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158248313</pqid></control><display><type>article</type><title>Evaluating cutinase from Fusarium oxysporum as a biocatalyst for the degradation of nine synthetic polymer</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>de Oliveira, Maycon Vinicius Damasceno ; Calandrini, Gabriel ; da Costa, Clauber Henrique Souza ; da Silva de Souza, Carlos Gabriel ; Alves, Cláudio Nahum ; Silva, José Rogério A. ; Lima, Anderson H. ; Lameira, Jerônimo</creator><creatorcontrib>de Oliveira, Maycon Vinicius Damasceno ; Calandrini, Gabriel ; da Costa, Clauber Henrique Souza ; da Silva de Souza, Carlos Gabriel ; Alves, Cláudio Nahum ; Silva, José Rogério A. ; Lima, Anderson H. ; Lameira, Jerônimo</creatorcontrib><description>Plastic poses a significant environmental impact due to its chemical resilience, leading to prolonged and degradation times and resulting in widespread adverse effects on global flora and fauna. Cutinases are essential enzymes in the biodegradation process of synthetic polymers like polyethylene terephthalate (PET), which recognized organisms can break down. Here, we used molecular dynamics and binding free energy calculations to explore the interaction of nine synthetic polymers, including PET, with Cutinase from Fusarium oxysporum ( Fo Cut). According to our findings, the polymers poly(ethylene terephthalate) (PET), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT) and poly(ε-caprolactone) (PCL) can bind to the Cutinase enzyme from  F. oxysporum , indicating potential biodegradation activity for these polymers. PET exhibited the highest binding affinity (− 34.26 kcal/mol). Besides PET, the polymers PHBH, PBS, PBAT, and PCL also demonstrated significant affinities for the Fo Cut enzyme, with binding values of − 18.44, − 29.71, − 22.78, and − 22.26 kcal/mol, respectively. Additionally, analysis of the phylogenetic tree of cutinases produced by different organisms demonstrated that even though the organisms belong to different kingdoms, the cutinase from F. oxysporum  ( Fo Cut) showed biological similarity in its activity in degrading polymers with the cutinase enzyme from the bacterium Kineococcus radiotolerans  and the fungus  Moniliophthora roreri . Furthermore, the phylogenetic analysis demonstrated that the PETase enzyme has a very high similarity with the bacterial cutinase enzyme than with the fungal cutinase, therefore demonstrating that the PETase enzyme from Ideonella sakaiensis can easily be a modified bacterial cutinase enzyme that created a unique feature in biodegrading only the pet polymer through an evolutionary process due to its environment and its biochemical need for carbon. Our data demonstrate that bacterial cutinase enzymes have the same common ancestor as the PETase enzyme. Therefore, cutinases and PETase are interconnected through their biological similarity in biodegrading polymers. We demonstrated that important conserved regions, such as the Ser-Asp-His catalytic triad, exist in the enzyme’s catalytic site and that all Cut enzymes from different organisms have the same region to couple with the polymer structures.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-84718-0</identifier><identifier>PMID: 39843897</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/45 ; 631/57 ; 631/61 ; 639/638 ; Biocatalysis ; Biodegradation ; Biodegradation, Environmental ; Carboxylic Ester Hydrolases - chemistry ; Carboxylic Ester Hydrolases - genetics ; Carboxylic Ester Hydrolases - metabolism ; Cutinase ; Environmental degradation ; Environmental impact ; Enzymes ; Flora ; Free energy ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fusarium - enzymology ; Fusarium - genetics ; Fusarium - metabolism ; Fusarium oxysporum ; Humanities and Social Sciences ; Molecular dynamic ; Molecular Dynamics Simulation ; multidisciplinary ; Phylogenetics ; Phylogentic ; Phylogeny ; Polycaprolactone ; Polyesters - chemistry ; Polyesters - metabolism ; Polyethylene terephthalate ; Polyethylene Terephthalates - chemistry ; Polyethylene Terephthalates - metabolism ; Polymer ; Polymers ; Polymers - chemistry ; Polymers - metabolism ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2025-01, Vol.15 (1), p.2887-18, Article 2887</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2025</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-7321a5bc87d4db1d2c05d1d6fe86164796aee8a318fe70f828d99ace1f098b0f3</cites><orcidid>0000-0001-6321-2228 ; 0000-0002-8451-9912 ; 0000-0002-6915-1056 ; 0000-0001-7270-1517 ; 0000-0003-2263-2124 ; 0000-0001-6572-7196 ; 0000-0003-2310-5107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3158248313/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3158248313?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,38493,43871,44566,53766,53768,74382,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39843897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira, Maycon Vinicius Damasceno</creatorcontrib><creatorcontrib>Calandrini, Gabriel</creatorcontrib><creatorcontrib>da Costa, Clauber Henrique Souza</creatorcontrib><creatorcontrib>da Silva de Souza, Carlos Gabriel</creatorcontrib><creatorcontrib>Alves, Cláudio Nahum</creatorcontrib><creatorcontrib>Silva, José Rogério A.</creatorcontrib><creatorcontrib>Lima, Anderson H.</creatorcontrib><creatorcontrib>Lameira, Jerônimo</creatorcontrib><title>Evaluating cutinase from Fusarium oxysporum as a biocatalyst for the degradation of nine synthetic polymer</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Plastic poses a significant environmental impact due to its chemical resilience, leading to prolonged and degradation times and resulting in widespread adverse effects on global flora and fauna. Cutinases are essential enzymes in the biodegradation process of synthetic polymers like polyethylene terephthalate (PET), which recognized organisms can break down. Here, we used molecular dynamics and binding free energy calculations to explore the interaction of nine synthetic polymers, including PET, with Cutinase from Fusarium oxysporum ( Fo Cut). According to our findings, the polymers poly(ethylene terephthalate) (PET), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT) and poly(ε-caprolactone) (PCL) can bind to the Cutinase enzyme from  F. oxysporum , indicating potential biodegradation activity for these polymers. PET exhibited the highest binding affinity (− 34.26 kcal/mol). Besides PET, the polymers PHBH, PBS, PBAT, and PCL also demonstrated significant affinities for the Fo Cut enzyme, with binding values of − 18.44, − 29.71, − 22.78, and − 22.26 kcal/mol, respectively. Additionally, analysis of the phylogenetic tree of cutinases produced by different organisms demonstrated that even though the organisms belong to different kingdoms, the cutinase from F. oxysporum  ( Fo Cut) showed biological similarity in its activity in degrading polymers with the cutinase enzyme from the bacterium Kineococcus radiotolerans  and the fungus  Moniliophthora roreri . Furthermore, the phylogenetic analysis demonstrated that the PETase enzyme has a very high similarity with the bacterial cutinase enzyme than with the fungal cutinase, therefore demonstrating that the PETase enzyme from Ideonella sakaiensis can easily be a modified bacterial cutinase enzyme that created a unique feature in biodegrading only the pet polymer through an evolutionary process due to its environment and its biochemical need for carbon. Our data demonstrate that bacterial cutinase enzymes have the same common ancestor as the PETase enzyme. Therefore, cutinases and PETase are interconnected through their biological similarity in biodegrading polymers. We demonstrated that important conserved regions, such as the Ser-Asp-His catalytic triad, exist in the enzyme’s catalytic site and that all Cut enzymes from different organisms have the same region to couple with the polymer structures.</description><subject>631/114</subject><subject>631/45</subject><subject>631/57</subject><subject>631/61</subject><subject>639/638</subject><subject>Biocatalysis</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Carboxylic Ester Hydrolases - chemistry</subject><subject>Carboxylic Ester Hydrolases - genetics</subject><subject>Carboxylic Ester Hydrolases - metabolism</subject><subject>Cutinase</subject><subject>Environmental degradation</subject><subject>Environmental impact</subject><subject>Enzymes</subject><subject>Flora</subject><subject>Free energy</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fusarium - enzymology</subject><subject>Fusarium - genetics</subject><subject>Fusarium - metabolism</subject><subject>Fusarium oxysporum</subject><subject>Humanities and Social Sciences</subject><subject>Molecular dynamic</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Phylogenetics</subject><subject>Phylogentic</subject><subject>Phylogeny</subject><subject>Polycaprolactone</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - metabolism</subject><subject>Polyethylene terephthalate</subject><subject>Polyethylene Terephthalates - chemistry</subject><subject>Polyethylene Terephthalates - metabolism</subject><subject>Polymer</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Polymers - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1TAQhSMEolXpC7BAltiwCfgvsb1CqGqhUiU2sLYm9vg2V0l8sZOKvD3mppSWBd7MyHPm83h0quo1o-8ZFfpDlqwxuqZc1loqVrJn1Smnsqm54Pz5o_ykOs95T8tpuJHMvKxOhNFSaKNOq_3lHQwLzP20I24pATKSkOJIrpYMqV9GEn-u-RBTySATIF0fHcwwrHkmISYy3yLxuEvgCyVOJAYy9ROSvE6lNPeOHOKwjpheVS8CDBnP7-NZ9f3q8tvFl_rm6-fri083tZOcz7USnEHTOa289B3z3NHGM98G1C1rpTItIGoQTAdUNGiuvTHgkAVqdEeDOKuuN66PsLeH1I-QVhuht8eLmHYWUplrQOuVUQEaiUIp2TrTtdwoCUaX1UrW6cL6uLEOSzeidzjNCYYn0KeVqb-1u3hnGVONlFwWwrt7Qoo_FsyzHfvscBhgwrhkK1ijVSu4ZEX69h_pPi5pKrs6qrjUgomi4pvKpZhzwvAwDaP2tzXsZg1brGGP1rC0NL15_I-Hlj9GKAKxCXIpTTtMf9_-D_YX1TnFrg</recordid><startdate>20250122</startdate><enddate>20250122</enddate><creator>de Oliveira, Maycon Vinicius Damasceno</creator><creator>Calandrini, Gabriel</creator><creator>da Costa, Clauber Henrique Souza</creator><creator>da Silva de Souza, Carlos Gabriel</creator><creator>Alves, Cláudio Nahum</creator><creator>Silva, José Rogério A.</creator><creator>Lima, Anderson H.</creator><creator>Lameira, Jerônimo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6321-2228</orcidid><orcidid>https://orcid.org/0000-0002-8451-9912</orcidid><orcidid>https://orcid.org/0000-0002-6915-1056</orcidid><orcidid>https://orcid.org/0000-0001-7270-1517</orcidid><orcidid>https://orcid.org/0000-0003-2263-2124</orcidid><orcidid>https://orcid.org/0000-0001-6572-7196</orcidid><orcidid>https://orcid.org/0000-0003-2310-5107</orcidid></search><sort><creationdate>20250122</creationdate><title>Evaluating cutinase from Fusarium oxysporum as a biocatalyst for the degradation of nine synthetic polymer</title><author>de Oliveira, Maycon Vinicius Damasceno ; Calandrini, Gabriel ; da Costa, Clauber Henrique Souza ; da Silva de Souza, Carlos Gabriel ; Alves, Cláudio Nahum ; Silva, José Rogério A. ; Lima, Anderson H. ; Lameira, Jerônimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-7321a5bc87d4db1d2c05d1d6fe86164796aee8a318fe70f828d99ace1f098b0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>631/114</topic><topic>631/45</topic><topic>631/57</topic><topic>631/61</topic><topic>639/638</topic><topic>Biocatalysis</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Carboxylic Ester Hydrolases - chemistry</topic><topic>Carboxylic Ester Hydrolases - genetics</topic><topic>Carboxylic Ester Hydrolases - metabolism</topic><topic>Cutinase</topic><topic>Environmental degradation</topic><topic>Environmental impact</topic><topic>Enzymes</topic><topic>Flora</topic><topic>Free energy</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fusarium - enzymology</topic><topic>Fusarium - genetics</topic><topic>Fusarium - metabolism</topic><topic>Fusarium oxysporum</topic><topic>Humanities and Social Sciences</topic><topic>Molecular dynamic</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Phylogenetics</topic><topic>Phylogentic</topic><topic>Phylogeny</topic><topic>Polycaprolactone</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - metabolism</topic><topic>Polyethylene terephthalate</topic><topic>Polyethylene Terephthalates - chemistry</topic><topic>Polyethylene Terephthalates - metabolism</topic><topic>Polymer</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Polymers - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, Maycon Vinicius Damasceno</creatorcontrib><creatorcontrib>Calandrini, Gabriel</creatorcontrib><creatorcontrib>da Costa, Clauber Henrique Souza</creatorcontrib><creatorcontrib>da Silva de Souza, Carlos Gabriel</creatorcontrib><creatorcontrib>Alves, Cláudio Nahum</creatorcontrib><creatorcontrib>Silva, José Rogério A.</creatorcontrib><creatorcontrib>Lima, Anderson H.</creatorcontrib><creatorcontrib>Lameira, Jerônimo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, Maycon Vinicius Damasceno</au><au>Calandrini, Gabriel</au><au>da Costa, Clauber Henrique Souza</au><au>da Silva de Souza, Carlos Gabriel</au><au>Alves, Cláudio Nahum</au><au>Silva, José Rogério A.</au><au>Lima, Anderson H.</au><au>Lameira, Jerônimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating cutinase from Fusarium oxysporum as a biocatalyst for the degradation of nine synthetic polymer</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2025-01-22</date><risdate>2025</risdate><volume>15</volume><issue>1</issue><spage>2887</spage><epage>18</epage><pages>2887-18</pages><artnum>2887</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Plastic poses a significant environmental impact due to its chemical resilience, leading to prolonged and degradation times and resulting in widespread adverse effects on global flora and fauna. Cutinases are essential enzymes in the biodegradation process of synthetic polymers like polyethylene terephthalate (PET), which recognized organisms can break down. Here, we used molecular dynamics and binding free energy calculations to explore the interaction of nine synthetic polymers, including PET, with Cutinase from Fusarium oxysporum ( Fo Cut). According to our findings, the polymers poly(ethylene terephthalate) (PET), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT) and poly(ε-caprolactone) (PCL) can bind to the Cutinase enzyme from  F. oxysporum , indicating potential biodegradation activity for these polymers. PET exhibited the highest binding affinity (− 34.26 kcal/mol). Besides PET, the polymers PHBH, PBS, PBAT, and PCL also demonstrated significant affinities for the Fo Cut enzyme, with binding values of − 18.44, − 29.71, − 22.78, and − 22.26 kcal/mol, respectively. Additionally, analysis of the phylogenetic tree of cutinases produced by different organisms demonstrated that even though the organisms belong to different kingdoms, the cutinase from F. oxysporum  ( Fo Cut) showed biological similarity in its activity in degrading polymers with the cutinase enzyme from the bacterium Kineococcus radiotolerans  and the fungus  Moniliophthora roreri . Furthermore, the phylogenetic analysis demonstrated that the PETase enzyme has a very high similarity with the bacterial cutinase enzyme than with the fungal cutinase, therefore demonstrating that the PETase enzyme from Ideonella sakaiensis can easily be a modified bacterial cutinase enzyme that created a unique feature in biodegrading only the pet polymer through an evolutionary process due to its environment and its biochemical need for carbon. Our data demonstrate that bacterial cutinase enzymes have the same common ancestor as the PETase enzyme. Therefore, cutinases and PETase are interconnected through their biological similarity in biodegrading polymers. We demonstrated that important conserved regions, such as the Ser-Asp-His catalytic triad, exist in the enzyme’s catalytic site and that all Cut enzymes from different organisms have the same region to couple with the polymer structures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39843897</pmid><doi>10.1038/s41598-024-84718-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6321-2228</orcidid><orcidid>https://orcid.org/0000-0002-8451-9912</orcidid><orcidid>https://orcid.org/0000-0002-6915-1056</orcidid><orcidid>https://orcid.org/0000-0001-7270-1517</orcidid><orcidid>https://orcid.org/0000-0003-2263-2124</orcidid><orcidid>https://orcid.org/0000-0001-6572-7196</orcidid><orcidid>https://orcid.org/0000-0003-2310-5107</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2025-01, Vol.15 (1), p.2887-18, Article 2887
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d797fa54e37746c9b62974a9859841b8
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114
631/45
631/57
631/61
639/638
Biocatalysis
Biodegradation
Biodegradation, Environmental
Carboxylic Ester Hydrolases - chemistry
Carboxylic Ester Hydrolases - genetics
Carboxylic Ester Hydrolases - metabolism
Cutinase
Environmental degradation
Environmental impact
Enzymes
Flora
Free energy
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
Fusarium - enzymology
Fusarium - genetics
Fusarium - metabolism
Fusarium oxysporum
Humanities and Social Sciences
Molecular dynamic
Molecular Dynamics Simulation
multidisciplinary
Phylogenetics
Phylogentic
Phylogeny
Polycaprolactone
Polyesters - chemistry
Polyesters - metabolism
Polyethylene terephthalate
Polyethylene Terephthalates - chemistry
Polyethylene Terephthalates - metabolism
Polymer
Polymers
Polymers - chemistry
Polymers - metabolism
Science
Science (multidisciplinary)
title Evaluating cutinase from Fusarium oxysporum as a biocatalyst for the degradation of nine synthetic polymer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T15%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20cutinase%20from%20Fusarium%20oxysporum%20as%20a%20biocatalyst%20for%20the%20degradation%20of%20nine%20synthetic%20polymer&rft.jtitle=Scientific%20reports&rft.au=de%20Oliveira,%20Maycon%20Vinicius%20Damasceno&rft.date=2025-01-22&rft.volume=15&rft.issue=1&rft.spage=2887&rft.epage=18&rft.pages=2887-18&rft.artnum=2887&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-84718-0&rft_dat=%3Cproquest_doaj_%3E3158763241%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-7321a5bc87d4db1d2c05d1d6fe86164796aee8a318fe70f828d99ace1f098b0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3158248313&rft_id=info:pmid/39843897&rfr_iscdi=true