Loading…
Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure
Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole l...
Saved in:
Published in: | iScience 2020-07, Vol.23 (7), p.101316-101316, Article 101316 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3 |
container_end_page | 101316 |
container_issue | 7 |
container_start_page | 101316 |
container_title | iScience |
container_volume | 23 |
creator | Hollnagel, Jan-Oliver Cesetti, Tiziana Schneider, Justus Vazetdinova, Alina Valiullina-Rakhmatullina, Fliza Lewen, Andrea Rozov, Andrei Kann, Oliver |
description | Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse.
[Display omitted]
•Lactate fuels network oscillations featuring low energy expenditure•Lactate can disturb the neuronal excitation-inhibition balance•Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses•Lactate increases oxygen consumption, whereas neural activity can even decrease
Biochemistry; Neuroscience; Cell Biology |
doi_str_mv | 10.1016/j.isci.2020.101316 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7986e59e2ef4a61b14377237bfa4bf4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589004220305034</els_id><doaj_id>oai_doaj_org_article_d7986e59e2ef4a61b14377237bfa4bf4</doaj_id><sourcerecordid>2423515924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhlcIRKvSP8AB-cglwR7b-yEhpFCltFIkJChny2vPbhxtvMH2VuTf43RL1V44eTTzzjPjeYviPaNLRln5abd00bglUHhIcFa-Ks5B1s2CUgGvn8VnxWWMO0qzkoJoyrfFGYdS8ppW54XdaJN0QrJKCf2Uo0h-Hr0-JGfIXdA-7l2MbvREe0tWXYcmRfI1aOfJj-0xbfeRXKNOU3C-Jzeu35K1x9AfyfrPAb11uYLvijedHiJePr4Xxa_r9d3VzWLz_dvt1WqzMLKu0sIYahiXbQc1aylyK2pNraVYQqUlCMM51KKuW4ZZ2bQtMIEVaAAjWdlpflHczlw76p06BLfX4ahG7dRDYgy90iF_bEBlq6YuUTYI2AldspYJXlXAq7bTou1EZn2ZWYep3aM16FPQwwvoy4p3W9WP96rikjLJM-DjIyCMvyeMSeVLGhwG7XGcogIBXDLZwGkWzFITxhgDdk9jGFUnt9VOndxWJ7fV7HZu-vB8waeWf95mwedZgPnk9w6Dygj0Bq0L2cV8E_c__l-7D7yE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423515924</pqid></control><display><type>article</type><title>Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Hollnagel, Jan-Oliver ; Cesetti, Tiziana ; Schneider, Justus ; Vazetdinova, Alina ; Valiullina-Rakhmatullina, Fliza ; Lewen, Andrea ; Rozov, Andrei ; Kann, Oliver</creator><creatorcontrib>Hollnagel, Jan-Oliver ; Cesetti, Tiziana ; Schneider, Justus ; Vazetdinova, Alina ; Valiullina-Rakhmatullina, Fliza ; Lewen, Andrea ; Rozov, Andrei ; Kann, Oliver</creatorcontrib><description>Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse.
[Display omitted]
•Lactate fuels network oscillations featuring low energy expenditure•Lactate can disturb the neuronal excitation-inhibition balance•Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses•Lactate increases oxygen consumption, whereas neural activity can even decrease
Biochemistry; Neuroscience; Cell Biology</description><identifier>ISSN: 2589-0042</identifier><identifier>EISSN: 2589-0042</identifier><identifier>DOI: 10.1016/j.isci.2020.101316</identifier><identifier>PMID: 32653807</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biochemistry ; Cell Biology ; Neuroscience</subject><ispartof>iScience, 2020-07, Vol.23 (7), p.101316-101316, Article 101316</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3</citedby><cites>FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3</cites><orcidid>0000-0002-4060-0022 ; 0000-0003-4365-8067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350153/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2589004220305034$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32653807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hollnagel, Jan-Oliver</creatorcontrib><creatorcontrib>Cesetti, Tiziana</creatorcontrib><creatorcontrib>Schneider, Justus</creatorcontrib><creatorcontrib>Vazetdinova, Alina</creatorcontrib><creatorcontrib>Valiullina-Rakhmatullina, Fliza</creatorcontrib><creatorcontrib>Lewen, Andrea</creatorcontrib><creatorcontrib>Rozov, Andrei</creatorcontrib><creatorcontrib>Kann, Oliver</creatorcontrib><title>Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure</title><title>iScience</title><addtitle>iScience</addtitle><description>Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse.
[Display omitted]
•Lactate fuels network oscillations featuring low energy expenditure•Lactate can disturb the neuronal excitation-inhibition balance•Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses•Lactate increases oxygen consumption, whereas neural activity can even decrease
Biochemistry; Neuroscience; Cell Biology</description><subject>Biochemistry</subject><subject>Cell Biology</subject><subject>Neuroscience</subject><issn>2589-0042</issn><issn>2589-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1vEzEQhlcIRKvSP8AB-cglwR7b-yEhpFCltFIkJChny2vPbhxtvMH2VuTf43RL1V44eTTzzjPjeYviPaNLRln5abd00bglUHhIcFa-Ks5B1s2CUgGvn8VnxWWMO0qzkoJoyrfFGYdS8ppW54XdaJN0QrJKCf2Uo0h-Hr0-JGfIXdA-7l2MbvREe0tWXYcmRfI1aOfJj-0xbfeRXKNOU3C-Jzeu35K1x9AfyfrPAb11uYLvijedHiJePr4Xxa_r9d3VzWLz_dvt1WqzMLKu0sIYahiXbQc1aylyK2pNraVYQqUlCMM51KKuW4ZZ2bQtMIEVaAAjWdlpflHczlw76p06BLfX4ahG7dRDYgy90iF_bEBlq6YuUTYI2AldspYJXlXAq7bTou1EZn2ZWYep3aM16FPQwwvoy4p3W9WP96rikjLJM-DjIyCMvyeMSeVLGhwG7XGcogIBXDLZwGkWzFITxhgDdk9jGFUnt9VOndxWJ7fV7HZu-vB8waeWf95mwedZgPnk9w6Dygj0Bq0L2cV8E_c__l-7D7yE</recordid><startdate>20200724</startdate><enddate>20200724</enddate><creator>Hollnagel, Jan-Oliver</creator><creator>Cesetti, Tiziana</creator><creator>Schneider, Justus</creator><creator>Vazetdinova, Alina</creator><creator>Valiullina-Rakhmatullina, Fliza</creator><creator>Lewen, Andrea</creator><creator>Rozov, Andrei</creator><creator>Kann, Oliver</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4060-0022</orcidid><orcidid>https://orcid.org/0000-0003-4365-8067</orcidid></search><sort><creationdate>20200724</creationdate><title>Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure</title><author>Hollnagel, Jan-Oliver ; Cesetti, Tiziana ; Schneider, Justus ; Vazetdinova, Alina ; Valiullina-Rakhmatullina, Fliza ; Lewen, Andrea ; Rozov, Andrei ; Kann, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry</topic><topic>Cell Biology</topic><topic>Neuroscience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hollnagel, Jan-Oliver</creatorcontrib><creatorcontrib>Cesetti, Tiziana</creatorcontrib><creatorcontrib>Schneider, Justus</creatorcontrib><creatorcontrib>Vazetdinova, Alina</creatorcontrib><creatorcontrib>Valiullina-Rakhmatullina, Fliza</creatorcontrib><creatorcontrib>Lewen, Andrea</creatorcontrib><creatorcontrib>Rozov, Andrei</creatorcontrib><creatorcontrib>Kann, Oliver</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>iScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hollnagel, Jan-Oliver</au><au>Cesetti, Tiziana</au><au>Schneider, Justus</au><au>Vazetdinova, Alina</au><au>Valiullina-Rakhmatullina, Fliza</au><au>Lewen, Andrea</au><au>Rozov, Andrei</au><au>Kann, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure</atitle><jtitle>iScience</jtitle><addtitle>iScience</addtitle><date>2020-07-24</date><risdate>2020</risdate><volume>23</volume><issue>7</issue><spage>101316</spage><epage>101316</epage><pages>101316-101316</pages><artnum>101316</artnum><issn>2589-0042</issn><eissn>2589-0042</eissn><abstract>Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse.
[Display omitted]
•Lactate fuels network oscillations featuring low energy expenditure•Lactate can disturb the neuronal excitation-inhibition balance•Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses•Lactate increases oxygen consumption, whereas neural activity can even decrease
Biochemistry; Neuroscience; Cell Biology</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32653807</pmid><doi>10.1016/j.isci.2020.101316</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4060-0022</orcidid><orcidid>https://orcid.org/0000-0003-4365-8067</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2589-0042 |
ispartof | iScience, 2020-07, Vol.23 (7), p.101316-101316, Article 101316 |
issn | 2589-0042 2589-0042 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d7986e59e2ef4a61b14377237bfa4bf4 |
source | Open Access: PubMed Central; ScienceDirect Journals |
subjects | Biochemistry Cell Biology Neuroscience |
title | Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lactate%20Attenuates%20Synaptic%20Transmission%20and%20Affects%20Brain%20Rhythms%20Featuring%20High%20Energy%20Expenditure&rft.jtitle=iScience&rft.au=Hollnagel,%20Jan-Oliver&rft.date=2020-07-24&rft.volume=23&rft.issue=7&rft.spage=101316&rft.epage=101316&rft.pages=101316-101316&rft.artnum=101316&rft.issn=2589-0042&rft.eissn=2589-0042&rft_id=info:doi/10.1016/j.isci.2020.101316&rft_dat=%3Cproquest_doaj_%3E2423515924%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2423515924&rft_id=info:pmid/32653807&rfr_iscdi=true |