Loading…

Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure

Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole l...

Full description

Saved in:
Bibliographic Details
Published in:iScience 2020-07, Vol.23 (7), p.101316-101316, Article 101316
Main Authors: Hollnagel, Jan-Oliver, Cesetti, Tiziana, Schneider, Justus, Vazetdinova, Alina, Valiullina-Rakhmatullina, Fliza, Lewen, Andrea, Rozov, Andrei, Kann, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3
cites cdi_FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3
container_end_page 101316
container_issue 7
container_start_page 101316
container_title iScience
container_volume 23
creator Hollnagel, Jan-Oliver
Cesetti, Tiziana
Schneider, Justus
Vazetdinova, Alina
Valiullina-Rakhmatullina, Fliza
Lewen, Andrea
Rozov, Andrei
Kann, Oliver
description Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse. [Display omitted] •Lactate fuels network oscillations featuring low energy expenditure•Lactate can disturb the neuronal excitation-inhibition balance•Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses•Lactate increases oxygen consumption, whereas neural activity can even decrease Biochemistry; Neuroscience; Cell Biology
doi_str_mv 10.1016/j.isci.2020.101316
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7986e59e2ef4a61b14377237bfa4bf4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2589004220305034</els_id><doaj_id>oai_doaj_org_article_d7986e59e2ef4a61b14377237bfa4bf4</doaj_id><sourcerecordid>2423515924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhlcIRKvSP8AB-cglwR7b-yEhpFCltFIkJChny2vPbhxtvMH2VuTf43RL1V44eTTzzjPjeYviPaNLRln5abd00bglUHhIcFa-Ks5B1s2CUgGvn8VnxWWMO0qzkoJoyrfFGYdS8ppW54XdaJN0QrJKCf2Uo0h-Hr0-JGfIXdA-7l2MbvREe0tWXYcmRfI1aOfJj-0xbfeRXKNOU3C-Jzeu35K1x9AfyfrPAb11uYLvijedHiJePr4Xxa_r9d3VzWLz_dvt1WqzMLKu0sIYahiXbQc1aylyK2pNraVYQqUlCMM51KKuW4ZZ2bQtMIEVaAAjWdlpflHczlw76p06BLfX4ahG7dRDYgy90iF_bEBlq6YuUTYI2AldspYJXlXAq7bTou1EZn2ZWYep3aM16FPQwwvoy4p3W9WP96rikjLJM-DjIyCMvyeMSeVLGhwG7XGcogIBXDLZwGkWzFITxhgDdk9jGFUnt9VOndxWJ7fV7HZu-vB8waeWf95mwedZgPnk9w6Dygj0Bq0L2cV8E_c__l-7D7yE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423515924</pqid></control><display><type>article</type><title>Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure</title><source>Open Access: PubMed Central</source><source>ScienceDirect Journals</source><creator>Hollnagel, Jan-Oliver ; Cesetti, Tiziana ; Schneider, Justus ; Vazetdinova, Alina ; Valiullina-Rakhmatullina, Fliza ; Lewen, Andrea ; Rozov, Andrei ; Kann, Oliver</creator><creatorcontrib>Hollnagel, Jan-Oliver ; Cesetti, Tiziana ; Schneider, Justus ; Vazetdinova, Alina ; Valiullina-Rakhmatullina, Fliza ; Lewen, Andrea ; Rozov, Andrei ; Kann, Oliver</creatorcontrib><description>Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse. [Display omitted] •Lactate fuels network oscillations featuring low energy expenditure•Lactate can disturb the neuronal excitation-inhibition balance•Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses•Lactate increases oxygen consumption, whereas neural activity can even decrease Biochemistry; Neuroscience; Cell Biology</description><identifier>ISSN: 2589-0042</identifier><identifier>EISSN: 2589-0042</identifier><identifier>DOI: 10.1016/j.isci.2020.101316</identifier><identifier>PMID: 32653807</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biochemistry ; Cell Biology ; Neuroscience</subject><ispartof>iScience, 2020-07, Vol.23 (7), p.101316-101316, Article 101316</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3</citedby><cites>FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3</cites><orcidid>0000-0002-4060-0022 ; 0000-0003-4365-8067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350153/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2589004220305034$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32653807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hollnagel, Jan-Oliver</creatorcontrib><creatorcontrib>Cesetti, Tiziana</creatorcontrib><creatorcontrib>Schneider, Justus</creatorcontrib><creatorcontrib>Vazetdinova, Alina</creatorcontrib><creatorcontrib>Valiullina-Rakhmatullina, Fliza</creatorcontrib><creatorcontrib>Lewen, Andrea</creatorcontrib><creatorcontrib>Rozov, Andrei</creatorcontrib><creatorcontrib>Kann, Oliver</creatorcontrib><title>Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure</title><title>iScience</title><addtitle>iScience</addtitle><description>Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse. [Display omitted] •Lactate fuels network oscillations featuring low energy expenditure•Lactate can disturb the neuronal excitation-inhibition balance•Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses•Lactate increases oxygen consumption, whereas neural activity can even decrease Biochemistry; Neuroscience; Cell Biology</description><subject>Biochemistry</subject><subject>Cell Biology</subject><subject>Neuroscience</subject><issn>2589-0042</issn><issn>2589-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1vEzEQhlcIRKvSP8AB-cglwR7b-yEhpFCltFIkJChny2vPbhxtvMH2VuTf43RL1V44eTTzzjPjeYviPaNLRln5abd00bglUHhIcFa-Ks5B1s2CUgGvn8VnxWWMO0qzkoJoyrfFGYdS8ppW54XdaJN0QrJKCf2Uo0h-Hr0-JGfIXdA-7l2MbvREe0tWXYcmRfI1aOfJj-0xbfeRXKNOU3C-Jzeu35K1x9AfyfrPAb11uYLvijedHiJePr4Xxa_r9d3VzWLz_dvt1WqzMLKu0sIYahiXbQc1aylyK2pNraVYQqUlCMM51KKuW4ZZ2bQtMIEVaAAjWdlpflHczlw76p06BLfX4ahG7dRDYgy90iF_bEBlq6YuUTYI2AldspYJXlXAq7bTou1EZn2ZWYep3aM16FPQwwvoy4p3W9WP96rikjLJM-DjIyCMvyeMSeVLGhwG7XGcogIBXDLZwGkWzFITxhgDdk9jGFUnt9VOndxWJ7fV7HZu-vB8waeWf95mwedZgPnk9w6Dygj0Bq0L2cV8E_c__l-7D7yE</recordid><startdate>20200724</startdate><enddate>20200724</enddate><creator>Hollnagel, Jan-Oliver</creator><creator>Cesetti, Tiziana</creator><creator>Schneider, Justus</creator><creator>Vazetdinova, Alina</creator><creator>Valiullina-Rakhmatullina, Fliza</creator><creator>Lewen, Andrea</creator><creator>Rozov, Andrei</creator><creator>Kann, Oliver</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4060-0022</orcidid><orcidid>https://orcid.org/0000-0003-4365-8067</orcidid></search><sort><creationdate>20200724</creationdate><title>Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure</title><author>Hollnagel, Jan-Oliver ; Cesetti, Tiziana ; Schneider, Justus ; Vazetdinova, Alina ; Valiullina-Rakhmatullina, Fliza ; Lewen, Andrea ; Rozov, Andrei ; Kann, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry</topic><topic>Cell Biology</topic><topic>Neuroscience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hollnagel, Jan-Oliver</creatorcontrib><creatorcontrib>Cesetti, Tiziana</creatorcontrib><creatorcontrib>Schneider, Justus</creatorcontrib><creatorcontrib>Vazetdinova, Alina</creatorcontrib><creatorcontrib>Valiullina-Rakhmatullina, Fliza</creatorcontrib><creatorcontrib>Lewen, Andrea</creatorcontrib><creatorcontrib>Rozov, Andrei</creatorcontrib><creatorcontrib>Kann, Oliver</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>iScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hollnagel, Jan-Oliver</au><au>Cesetti, Tiziana</au><au>Schneider, Justus</au><au>Vazetdinova, Alina</au><au>Valiullina-Rakhmatullina, Fliza</au><au>Lewen, Andrea</au><au>Rozov, Andrei</au><au>Kann, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure</atitle><jtitle>iScience</jtitle><addtitle>iScience</addtitle><date>2020-07-24</date><risdate>2020</risdate><volume>23</volume><issue>7</issue><spage>101316</spage><epage>101316</epage><pages>101316-101316</pages><artnum>101316</artnum><issn>2589-0042</issn><eissn>2589-0042</eissn><abstract>Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse. [Display omitted] •Lactate fuels network oscillations featuring low energy expenditure•Lactate can disturb the neuronal excitation-inhibition balance•Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses•Lactate increases oxygen consumption, whereas neural activity can even decrease Biochemistry; Neuroscience; Cell Biology</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32653807</pmid><doi>10.1016/j.isci.2020.101316</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4060-0022</orcidid><orcidid>https://orcid.org/0000-0003-4365-8067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2589-0042
ispartof iScience, 2020-07, Vol.23 (7), p.101316-101316, Article 101316
issn 2589-0042
2589-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d7986e59e2ef4a61b14377237bfa4bf4
source Open Access: PubMed Central; ScienceDirect Journals
subjects Biochemistry
Cell Biology
Neuroscience
title Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lactate%20Attenuates%20Synaptic%20Transmission%20and%20Affects%20Brain%20Rhythms%20Featuring%20High%20Energy%20Expenditure&rft.jtitle=iScience&rft.au=Hollnagel,%20Jan-Oliver&rft.date=2020-07-24&rft.volume=23&rft.issue=7&rft.spage=101316&rft.epage=101316&rft.pages=101316-101316&rft.artnum=101316&rft.issn=2589-0042&rft.eissn=2589-0042&rft_id=info:doi/10.1016/j.isci.2020.101316&rft_dat=%3Cproquest_doaj_%3E2423515924%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c587t-cc0c135bf281b0e3d48a0dd0e627a524c3328488b1ec0c9bb214e72a22c516fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2423515924&rft_id=info:pmid/32653807&rfr_iscdi=true