Loading…
Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits
In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems pres...
Saved in:
Published in: | Applied sciences 2024-09, Vol.14 (17), p.8074 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c252t-18aadd1d33d11d856c478375e92f51a23ce8007673deac7d39677bd3576e9aa63 |
container_end_page | |
container_issue | 17 |
container_start_page | 8074 |
container_title | Applied sciences |
container_volume | 14 |
creator | Durán Acevedo, Cristhian Manuel Cárdenas Niño, Dayan Diomedes Carrillo Gómez, Jeniffer Katerine |
description | In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems present several advantages over conventional methods (e.g., GC-MS and others), including faster analysis, lower costs, ease of use, and portability. Additionally, they enable non-destructive testing and real-time monitoring, making them ideal for routine screenings and on-site analyses where effective detection is crucial. The collected data underwent rigorous analysis through multivariate techniques, specifically principal component analysis (PCA) and linear discriminant analysis (LDA). The application of machine learning (ML) algorithms resulted in a good outcome, achieving high accuracies in identifying fruits contaminated with pesticides and accurately determining the concentrations of those pesticides. This level of precision underscores the robustness and reliability of the methodologies employed, highlighting their potential as alternative tools for pesticide residue detection in agricultural products. |
doi_str_mv | 10.3390/app14178074 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7ab8bca43484399bf26a253977b98ca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7ab8bca43484399bf26a253977b98ca</doaj_id><sourcerecordid>3103849964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-18aadd1d33d11d856c478375e92f51a23ce8007673deac7d39677bd3576e9aa63</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBoj35BwIepZrs7G6So9SvQotC9eApTJNZTdHNmmwP_ffGVsS5zAfvvXnDFMWZ4JcAml9h34tKSMVldVCMSi6bCeT-8F99XIxTWvMcWoASfFS8LqlLIW7ZE0VL_eBDx5bbNNBnYtg5tkD77jtic8LY-e6NLWh4Dy6xNsTMSYO33hG7oYHsjuw7dhc3fkinxVGLH4nGv_mkeLm7fZ4-TOaP97Pp9Xxiy7ocJkIhOiccgBPCqbqxlVQga9JlWwsswZLi2b8ER2ilA91IuXJQy4Y0YgMnxWyv6wKuTR_9J8atCejNbhDim8GYbX6QcRJXamWxgkpVoPWqLRssa9BZUSuLWet8r9XH8LXJ15l12MQu2zcgOKhK66bKqIs9ysaQUqT2b6vg5ucV5t8r4Bsf0XsX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103849964</pqid></control><display><type>article</type><title>Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits</title><source>Publicly Available Content Database</source><creator>Durán Acevedo, Cristhian Manuel ; Cárdenas Niño, Dayan Diomedes ; Carrillo Gómez, Jeniffer Katerine</creator><creatorcontrib>Durán Acevedo, Cristhian Manuel ; Cárdenas Niño, Dayan Diomedes ; Carrillo Gómez, Jeniffer Katerine</creatorcontrib><description>In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems present several advantages over conventional methods (e.g., GC-MS and others), including faster analysis, lower costs, ease of use, and portability. Additionally, they enable non-destructive testing and real-time monitoring, making them ideal for routine screenings and on-site analyses where effective detection is crucial. The collected data underwent rigorous analysis through multivariate techniques, specifically principal component analysis (PCA) and linear discriminant analysis (LDA). The application of machine learning (ML) algorithms resulted in a good outcome, achieving high accuracies in identifying fruits contaminated with pesticides and accurately determining the concentrations of those pesticides. This level of precision underscores the robustness and reliability of the methodologies employed, highlighting their potential as alternative tools for pesticide residue detection in agricultural products.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14178074</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; Chromatography ; E-nose ; E-tongue ; Food chains ; Food quality ; Food security ; Food supply ; fruit pesticides ; Fruits ; Fungicides ; Insecticides ; machine learning ; pattern recognition ; Pesticides ; Poisoning ; Public health ; Sensors ; Strawberries ; Toxicity ; Vegetables</subject><ispartof>Applied sciences, 2024-09, Vol.14 (17), p.8074</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-18aadd1d33d11d856c478375e92f51a23ce8007673deac7d39677bd3576e9aa63</cites><orcidid>0000-0003-0392-8114 ; 0000-0002-5241-2950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3103849964/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3103849964?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Durán Acevedo, Cristhian Manuel</creatorcontrib><creatorcontrib>Cárdenas Niño, Dayan Diomedes</creatorcontrib><creatorcontrib>Carrillo Gómez, Jeniffer Katerine</creatorcontrib><title>Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits</title><title>Applied sciences</title><description>In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems present several advantages over conventional methods (e.g., GC-MS and others), including faster analysis, lower costs, ease of use, and portability. Additionally, they enable non-destructive testing and real-time monitoring, making them ideal for routine screenings and on-site analyses where effective detection is crucial. The collected data underwent rigorous analysis through multivariate techniques, specifically principal component analysis (PCA) and linear discriminant analysis (LDA). The application of machine learning (ML) algorithms resulted in a good outcome, achieving high accuracies in identifying fruits contaminated with pesticides and accurately determining the concentrations of those pesticides. This level of precision underscores the robustness and reliability of the methodologies employed, highlighting their potential as alternative tools for pesticide residue detection in agricultural products.</description><subject>Agriculture</subject><subject>Chromatography</subject><subject>E-nose</subject><subject>E-tongue</subject><subject>Food chains</subject><subject>Food quality</subject><subject>Food security</subject><subject>Food supply</subject><subject>fruit pesticides</subject><subject>Fruits</subject><subject>Fungicides</subject><subject>Insecticides</subject><subject>machine learning</subject><subject>pattern recognition</subject><subject>Pesticides</subject><subject>Poisoning</subject><subject>Public health</subject><subject>Sensors</subject><subject>Strawberries</subject><subject>Toxicity</subject><subject>Vegetables</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBoj35BwIepZrs7G6So9SvQotC9eApTJNZTdHNmmwP_ffGVsS5zAfvvXnDFMWZ4JcAml9h34tKSMVldVCMSi6bCeT-8F99XIxTWvMcWoASfFS8LqlLIW7ZE0VL_eBDx5bbNNBnYtg5tkD77jtic8LY-e6NLWh4Dy6xNsTMSYO33hG7oYHsjuw7dhc3fkinxVGLH4nGv_mkeLm7fZ4-TOaP97Pp9Xxiy7ocJkIhOiccgBPCqbqxlVQga9JlWwsswZLi2b8ER2ilA91IuXJQy4Y0YgMnxWyv6wKuTR_9J8atCejNbhDim8GYbX6QcRJXamWxgkpVoPWqLRssa9BZUSuLWet8r9XH8LXJ15l12MQu2zcgOKhK66bKqIs9ysaQUqT2b6vg5ucV5t8r4Bsf0XsX</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Durán Acevedo, Cristhian Manuel</creator><creator>Cárdenas Niño, Dayan Diomedes</creator><creator>Carrillo Gómez, Jeniffer Katerine</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0392-8114</orcidid><orcidid>https://orcid.org/0000-0002-5241-2950</orcidid></search><sort><creationdate>20240901</creationdate><title>Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits</title><author>Durán Acevedo, Cristhian Manuel ; Cárdenas Niño, Dayan Diomedes ; Carrillo Gómez, Jeniffer Katerine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-18aadd1d33d11d856c478375e92f51a23ce8007673deac7d39677bd3576e9aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Chromatography</topic><topic>E-nose</topic><topic>E-tongue</topic><topic>Food chains</topic><topic>Food quality</topic><topic>Food security</topic><topic>Food supply</topic><topic>fruit pesticides</topic><topic>Fruits</topic><topic>Fungicides</topic><topic>Insecticides</topic><topic>machine learning</topic><topic>pattern recognition</topic><topic>Pesticides</topic><topic>Poisoning</topic><topic>Public health</topic><topic>Sensors</topic><topic>Strawberries</topic><topic>Toxicity</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durán Acevedo, Cristhian Manuel</creatorcontrib><creatorcontrib>Cárdenas Niño, Dayan Diomedes</creatorcontrib><creatorcontrib>Carrillo Gómez, Jeniffer Katerine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durán Acevedo, Cristhian Manuel</au><au>Cárdenas Niño, Dayan Diomedes</au><au>Carrillo Gómez, Jeniffer Katerine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits</atitle><jtitle>Applied sciences</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>14</volume><issue>17</issue><spage>8074</spage><pages>8074-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems present several advantages over conventional methods (e.g., GC-MS and others), including faster analysis, lower costs, ease of use, and portability. Additionally, they enable non-destructive testing and real-time monitoring, making them ideal for routine screenings and on-site analyses where effective detection is crucial. The collected data underwent rigorous analysis through multivariate techniques, specifically principal component analysis (PCA) and linear discriminant analysis (LDA). The application of machine learning (ML) algorithms resulted in a good outcome, achieving high accuracies in identifying fruits contaminated with pesticides and accurately determining the concentrations of those pesticides. This level of precision underscores the robustness and reliability of the methodologies employed, highlighting their potential as alternative tools for pesticide residue detection in agricultural products.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14178074</doi><orcidid>https://orcid.org/0000-0003-0392-8114</orcidid><orcidid>https://orcid.org/0000-0002-5241-2950</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2024-09, Vol.14 (17), p.8074 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d7ab8bca43484399bf26a253977b98ca |
source | Publicly Available Content Database |
subjects | Agriculture Chromatography E-nose E-tongue Food chains Food quality Food security Food supply fruit pesticides Fruits Fungicides Insecticides machine learning pattern recognition Pesticides Poisoning Public health Sensors Strawberries Toxicity Vegetables |
title | Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensory%20Perception%20Systems%20and%20Machine%20Learning%20Methods%20for%20Pesticide%20Detection%20in%20Fruits&rft.jtitle=Applied%20sciences&rft.au=Dur%C3%A1n%20Acevedo,%20Cristhian%20Manuel&rft.date=2024-09-01&rft.volume=14&rft.issue=17&rft.spage=8074&rft.pages=8074-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14178074&rft_dat=%3Cproquest_doaj_%3E3103849964%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-18aadd1d33d11d856c478375e92f51a23ce8007673deac7d39677bd3576e9aa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103849964&rft_id=info:pmid/&rfr_iscdi=true |