Loading…

Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits

In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems pres...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2024-09, Vol.14 (17), p.8074
Main Authors: Durán Acevedo, Cristhian Manuel, Cárdenas Niño, Dayan Diomedes, Carrillo Gómez, Jeniffer Katerine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c252t-18aadd1d33d11d856c478375e92f51a23ce8007673deac7d39677bd3576e9aa63
container_end_page
container_issue 17
container_start_page 8074
container_title Applied sciences
container_volume 14
creator Durán Acevedo, Cristhian Manuel
Cárdenas Niño, Dayan Diomedes
Carrillo Gómez, Jeniffer Katerine
description In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems present several advantages over conventional methods (e.g., GC-MS and others), including faster analysis, lower costs, ease of use, and portability. Additionally, they enable non-destructive testing and real-time monitoring, making them ideal for routine screenings and on-site analyses where effective detection is crucial. The collected data underwent rigorous analysis through multivariate techniques, specifically principal component analysis (PCA) and linear discriminant analysis (LDA). The application of machine learning (ML) algorithms resulted in a good outcome, achieving high accuracies in identifying fruits contaminated with pesticides and accurately determining the concentrations of those pesticides. This level of precision underscores the robustness and reliability of the methodologies employed, highlighting their potential as alternative tools for pesticide residue detection in agricultural products.
doi_str_mv 10.3390/app14178074
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7ab8bca43484399bf26a253977b98ca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7ab8bca43484399bf26a253977b98ca</doaj_id><sourcerecordid>3103849964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-18aadd1d33d11d856c478375e92f51a23ce8007673deac7d39677bd3576e9aa63</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBoj35BwIepZrs7G6So9SvQotC9eApTJNZTdHNmmwP_ffGVsS5zAfvvXnDFMWZ4JcAml9h34tKSMVldVCMSi6bCeT-8F99XIxTWvMcWoASfFS8LqlLIW7ZE0VL_eBDx5bbNNBnYtg5tkD77jtic8LY-e6NLWh4Dy6xNsTMSYO33hG7oYHsjuw7dhc3fkinxVGLH4nGv_mkeLm7fZ4-TOaP97Pp9Xxiy7ocJkIhOiccgBPCqbqxlVQga9JlWwsswZLi2b8ER2ilA91IuXJQy4Y0YgMnxWyv6wKuTR_9J8atCejNbhDim8GYbX6QcRJXamWxgkpVoPWqLRssa9BZUSuLWet8r9XH8LXJ15l12MQu2zcgOKhK66bKqIs9ysaQUqT2b6vg5ucV5t8r4Bsf0XsX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103849964</pqid></control><display><type>article</type><title>Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits</title><source>Publicly Available Content Database</source><creator>Durán Acevedo, Cristhian Manuel ; Cárdenas Niño, Dayan Diomedes ; Carrillo Gómez, Jeniffer Katerine</creator><creatorcontrib>Durán Acevedo, Cristhian Manuel ; Cárdenas Niño, Dayan Diomedes ; Carrillo Gómez, Jeniffer Katerine</creatorcontrib><description>In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems present several advantages over conventional methods (e.g., GC-MS and others), including faster analysis, lower costs, ease of use, and portability. Additionally, they enable non-destructive testing and real-time monitoring, making them ideal for routine screenings and on-site analyses where effective detection is crucial. The collected data underwent rigorous analysis through multivariate techniques, specifically principal component analysis (PCA) and linear discriminant analysis (LDA). The application of machine learning (ML) algorithms resulted in a good outcome, achieving high accuracies in identifying fruits contaminated with pesticides and accurately determining the concentrations of those pesticides. This level of precision underscores the robustness and reliability of the methodologies employed, highlighting their potential as alternative tools for pesticide residue detection in agricultural products.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14178074</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agriculture ; Chromatography ; E-nose ; E-tongue ; Food chains ; Food quality ; Food security ; Food supply ; fruit pesticides ; Fruits ; Fungicides ; Insecticides ; machine learning ; pattern recognition ; Pesticides ; Poisoning ; Public health ; Sensors ; Strawberries ; Toxicity ; Vegetables</subject><ispartof>Applied sciences, 2024-09, Vol.14 (17), p.8074</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-18aadd1d33d11d856c478375e92f51a23ce8007673deac7d39677bd3576e9aa63</cites><orcidid>0000-0003-0392-8114 ; 0000-0002-5241-2950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3103849964/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3103849964?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Durán Acevedo, Cristhian Manuel</creatorcontrib><creatorcontrib>Cárdenas Niño, Dayan Diomedes</creatorcontrib><creatorcontrib>Carrillo Gómez, Jeniffer Katerine</creatorcontrib><title>Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits</title><title>Applied sciences</title><description>In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems present several advantages over conventional methods (e.g., GC-MS and others), including faster analysis, lower costs, ease of use, and portability. Additionally, they enable non-destructive testing and real-time monitoring, making them ideal for routine screenings and on-site analyses where effective detection is crucial. The collected data underwent rigorous analysis through multivariate techniques, specifically principal component analysis (PCA) and linear discriminant analysis (LDA). The application of machine learning (ML) algorithms resulted in a good outcome, achieving high accuracies in identifying fruits contaminated with pesticides and accurately determining the concentrations of those pesticides. This level of precision underscores the robustness and reliability of the methodologies employed, highlighting their potential as alternative tools for pesticide residue detection in agricultural products.</description><subject>Agriculture</subject><subject>Chromatography</subject><subject>E-nose</subject><subject>E-tongue</subject><subject>Food chains</subject><subject>Food quality</subject><subject>Food security</subject><subject>Food supply</subject><subject>fruit pesticides</subject><subject>Fruits</subject><subject>Fungicides</subject><subject>Insecticides</subject><subject>machine learning</subject><subject>pattern recognition</subject><subject>Pesticides</subject><subject>Poisoning</subject><subject>Public health</subject><subject>Sensors</subject><subject>Strawberries</subject><subject>Toxicity</subject><subject>Vegetables</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBoj35BwIepZrs7G6So9SvQotC9eApTJNZTdHNmmwP_ffGVsS5zAfvvXnDFMWZ4JcAml9h34tKSMVldVCMSi6bCeT-8F99XIxTWvMcWoASfFS8LqlLIW7ZE0VL_eBDx5bbNNBnYtg5tkD77jtic8LY-e6NLWh4Dy6xNsTMSYO33hG7oYHsjuw7dhc3fkinxVGLH4nGv_mkeLm7fZ4-TOaP97Pp9Xxiy7ocJkIhOiccgBPCqbqxlVQga9JlWwsswZLi2b8ER2ilA91IuXJQy4Y0YgMnxWyv6wKuTR_9J8atCejNbhDim8GYbX6QcRJXamWxgkpVoPWqLRssa9BZUSuLWet8r9XH8LXJ15l12MQu2zcgOKhK66bKqIs9ysaQUqT2b6vg5ucV5t8r4Bsf0XsX</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Durán Acevedo, Cristhian Manuel</creator><creator>Cárdenas Niño, Dayan Diomedes</creator><creator>Carrillo Gómez, Jeniffer Katerine</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0392-8114</orcidid><orcidid>https://orcid.org/0000-0002-5241-2950</orcidid></search><sort><creationdate>20240901</creationdate><title>Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits</title><author>Durán Acevedo, Cristhian Manuel ; Cárdenas Niño, Dayan Diomedes ; Carrillo Gómez, Jeniffer Katerine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-18aadd1d33d11d856c478375e92f51a23ce8007673deac7d39677bd3576e9aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Chromatography</topic><topic>E-nose</topic><topic>E-tongue</topic><topic>Food chains</topic><topic>Food quality</topic><topic>Food security</topic><topic>Food supply</topic><topic>fruit pesticides</topic><topic>Fruits</topic><topic>Fungicides</topic><topic>Insecticides</topic><topic>machine learning</topic><topic>pattern recognition</topic><topic>Pesticides</topic><topic>Poisoning</topic><topic>Public health</topic><topic>Sensors</topic><topic>Strawberries</topic><topic>Toxicity</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durán Acevedo, Cristhian Manuel</creatorcontrib><creatorcontrib>Cárdenas Niño, Dayan Diomedes</creatorcontrib><creatorcontrib>Carrillo Gómez, Jeniffer Katerine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durán Acevedo, Cristhian Manuel</au><au>Cárdenas Niño, Dayan Diomedes</au><au>Carrillo Gómez, Jeniffer Katerine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits</atitle><jtitle>Applied sciences</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>14</volume><issue>17</issue><spage>8074</spage><pages>8074-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>In this study, an electronic tongue (E-tongue) and electronic nose (E-nose) systems were applied to detect pesticide residues, specifically Preza, Daconil, Curzate, Bricol, Accros, Amistar, and Funlate, in fruits such as cape gooseberries, apples, plums, and strawberries. These advanced systems present several advantages over conventional methods (e.g., GC-MS and others), including faster analysis, lower costs, ease of use, and portability. Additionally, they enable non-destructive testing and real-time monitoring, making them ideal for routine screenings and on-site analyses where effective detection is crucial. The collected data underwent rigorous analysis through multivariate techniques, specifically principal component analysis (PCA) and linear discriminant analysis (LDA). The application of machine learning (ML) algorithms resulted in a good outcome, achieving high accuracies in identifying fruits contaminated with pesticides and accurately determining the concentrations of those pesticides. This level of precision underscores the robustness and reliability of the methodologies employed, highlighting their potential as alternative tools for pesticide residue detection in agricultural products.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14178074</doi><orcidid>https://orcid.org/0000-0003-0392-8114</orcidid><orcidid>https://orcid.org/0000-0002-5241-2950</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2024-09, Vol.14 (17), p.8074
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d7ab8bca43484399bf26a253977b98ca
source Publicly Available Content Database
subjects Agriculture
Chromatography
E-nose
E-tongue
Food chains
Food quality
Food security
Food supply
fruit pesticides
Fruits
Fungicides
Insecticides
machine learning
pattern recognition
Pesticides
Poisoning
Public health
Sensors
Strawberries
Toxicity
Vegetables
title Sensory Perception Systems and Machine Learning Methods for Pesticide Detection in Fruits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensory%20Perception%20Systems%20and%20Machine%20Learning%20Methods%20for%20Pesticide%20Detection%20in%20Fruits&rft.jtitle=Applied%20sciences&rft.au=Dur%C3%A1n%20Acevedo,%20Cristhian%20Manuel&rft.date=2024-09-01&rft.volume=14&rft.issue=17&rft.spage=8074&rft.pages=8074-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14178074&rft_dat=%3Cproquest_doaj_%3E3103849964%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-18aadd1d33d11d856c478375e92f51a23ce8007673deac7d39677bd3576e9aa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103849964&rft_id=info:pmid/&rfr_iscdi=true