Loading…
Numerical Simulations of the Square Lid Driven Cavity Flow of Bingham Fluids Using Nonconforming Finite Elements Coupled with a Direct Solver
In this paper, numerical simulations are performed in a single and double lid driven square cavity to study the flow of a Bingham viscoplastic fluid. The governing equations are discretized with the help of finite element method in space and the nonconforming Stokes element Q~1/Q0 is utilized which...
Saved in:
Published in: | Advances in mathematical physics 2017-01, Vol.2017 (2017), p.1-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-b58f9ea8783e5770bbeeb8131882c052d9514d24902fd73ceb5ee307aeee95593 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-b58f9ea8783e5770bbeeb8131882c052d9514d24902fd73ceb5ee307aeee95593 |
container_end_page | 10 |
container_issue | 2017 |
container_start_page | 1 |
container_title | Advances in mathematical physics |
container_volume | 2017 |
creator | Jabeen, K. Yaqub, M. Kousar, N. Mahmood, R. |
description | In this paper, numerical simulations are performed in a single and double lid driven square cavity to study the flow of a Bingham viscoplastic fluid. The governing equations are discretized with the help of finite element method in space and the nonconforming Stokes element Q~1/Q0 is utilized which gives 2nd-order accuracy for velocity and 1st-order accuracy for pressure. The discretized systems of nonlinear equations are treated by using the Newton method and the inner linear subproablems are solved by the direct solver UMFPACK. A qualitative comparison is done with the results reported in the literature. In addition to these comparisons, some new reference data for the kinetic energy is generated. All these implementations are done in the open source software package FEATFLOW which is a general purpose finite element based solver package for solving partial differential equations. |
doi_str_mv | 10.1155/2017/5210708 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7aeeb70bb4b4736a6816a1d717a50f2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7aeeb70bb4b4736a6816a1d717a50f2</doaj_id><sourcerecordid>1904223652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-b58f9ea8783e5770bbeeb8131882c052d9514d24902fd73ceb5ee307aeee95593</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxU1poSHJreci6KXQbqM_lmUd2022DSzJYZOzkK1xVossbSR5l3yIfufYdUihl-oiPfGbNzO8ovhA8DdCOL-gmIgLTgkWuH5TnJCqFgtJmHz7-qb4fXGe0g6Ph0leSX5S_L4Zeoi21Q5tbD84nW3wCYUO5S2gzeOgI6C1Negy2gN4tNQHm5_QyoXjBP2w_mGr-1EP1iR0n0aNboJvg-9C7Ce1st5mQFcOevA5oWUY9g4MOtq8RRpd2ghtRpvgDhDPineddgnOX-7T4n51dbf8tVjf_rxefl8vWk6rvGh43UnQtagZcCFw0wA0NWGkrmmLOTWSk9LQUmLaGcFaaDgAw0IDgORcstPievY1Qe_UPtpexycVtFV_PkJ8UDpm2zpQZqpqph5lUwpW6aomlSZGEKE57ujo9Xn22sfwOEDKqrepBee0hzAkRSQuKWUVn9BP_6C7MEQ_bqrG0RkRtJLVSH2dqTaGlCJ0rwMSrKao1RS1eol6xL_M-NZ6o4_2f_THmYaRgU7_pQllFFP2DOrDsfk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883172696</pqid></control><display><type>article</type><title>Numerical Simulations of the Square Lid Driven Cavity Flow of Bingham Fluids Using Nonconforming Finite Elements Coupled with a Direct Solver</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Jabeen, K. ; Yaqub, M. ; Kousar, N. ; Mahmood, R.</creator><contributor>Yu, Xin</contributor><creatorcontrib>Jabeen, K. ; Yaqub, M. ; Kousar, N. ; Mahmood, R. ; Yu, Xin</creatorcontrib><description>In this paper, numerical simulations are performed in a single and double lid driven square cavity to study the flow of a Bingham viscoplastic fluid. The governing equations are discretized with the help of finite element method in space and the nonconforming Stokes element Q~1/Q0 is utilized which gives 2nd-order accuracy for velocity and 1st-order accuracy for pressure. The discretized systems of nonlinear equations are treated by using the Newton method and the inner linear subproablems are solved by the direct solver UMFPACK. A qualitative comparison is done with the results reported in the literature. In addition to these comparisons, some new reference data for the kinetic energy is generated. All these implementations are done in the open source software package FEATFLOW which is a general purpose finite element based solver package for solving partial differential equations.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2017/5210708</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Computational fluid dynamics ; Computer simulation ; Energy ; Finite element analysis ; Finite element method ; Fluid flow ; Mathematical analysis ; Mathematical models ; Methods ; Non-Newtonian fluids ; Numerical analysis ; Reynolds number ; Solvers ; Viscosity ; Yield stress</subject><ispartof>Advances in mathematical physics, 2017-01, Vol.2017 (2017), p.1-10</ispartof><rights>Copyright © 2017 R. Mahmood et al.</rights><rights>Copyright © 2017 R. Mahmood et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-b58f9ea8783e5770bbeeb8131882c052d9514d24902fd73ceb5ee307aeee95593</citedby><cites>FETCH-LOGICAL-c526t-b58f9ea8783e5770bbeeb8131882c052d9514d24902fd73ceb5ee307aeee95593</cites><orcidid>0000-0002-1251-5525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1883172696/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1883172696?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Yu, Xin</contributor><creatorcontrib>Jabeen, K.</creatorcontrib><creatorcontrib>Yaqub, M.</creatorcontrib><creatorcontrib>Kousar, N.</creatorcontrib><creatorcontrib>Mahmood, R.</creatorcontrib><title>Numerical Simulations of the Square Lid Driven Cavity Flow of Bingham Fluids Using Nonconforming Finite Elements Coupled with a Direct Solver</title><title>Advances in mathematical physics</title><description>In this paper, numerical simulations are performed in a single and double lid driven square cavity to study the flow of a Bingham viscoplastic fluid. The governing equations are discretized with the help of finite element method in space and the nonconforming Stokes element Q~1/Q0 is utilized which gives 2nd-order accuracy for velocity and 1st-order accuracy for pressure. The discretized systems of nonlinear equations are treated by using the Newton method and the inner linear subproablems are solved by the direct solver UMFPACK. A qualitative comparison is done with the results reported in the literature. In addition to these comparisons, some new reference data for the kinetic energy is generated. All these implementations are done in the open source software package FEATFLOW which is a general purpose finite element based solver package for solving partial differential equations.</description><subject>Accuracy</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Non-Newtonian fluids</subject><subject>Numerical analysis</subject><subject>Reynolds number</subject><subject>Solvers</subject><subject>Viscosity</subject><subject>Yield stress</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU9r3DAQxU1poSHJreci6KXQbqM_lmUd2022DSzJYZOzkK1xVossbSR5l3yIfufYdUihl-oiPfGbNzO8ovhA8DdCOL-gmIgLTgkWuH5TnJCqFgtJmHz7-qb4fXGe0g6Ph0leSX5S_L4Zeoi21Q5tbD84nW3wCYUO5S2gzeOgI6C1Negy2gN4tNQHm5_QyoXjBP2w_mGr-1EP1iR0n0aNboJvg-9C7Ce1st5mQFcOevA5oWUY9g4MOtq8RRpd2ghtRpvgDhDPineddgnOX-7T4n51dbf8tVjf_rxefl8vWk6rvGh43UnQtagZcCFw0wA0NWGkrmmLOTWSk9LQUmLaGcFaaDgAw0IDgORcstPievY1Qe_UPtpexycVtFV_PkJ8UDpm2zpQZqpqph5lUwpW6aomlSZGEKE57ujo9Xn22sfwOEDKqrepBee0hzAkRSQuKWUVn9BP_6C7MEQ_bqrG0RkRtJLVSH2dqTaGlCJ0rwMSrKao1RS1eol6xL_M-NZ6o4_2f_THmYaRgU7_pQllFFP2DOrDsfk</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Jabeen, K.</creator><creator>Yaqub, M.</creator><creator>Kousar, N.</creator><creator>Mahmood, R.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1251-5525</orcidid></search><sort><creationdate>20170101</creationdate><title>Numerical Simulations of the Square Lid Driven Cavity Flow of Bingham Fluids Using Nonconforming Finite Elements Coupled with a Direct Solver</title><author>Jabeen, K. ; Yaqub, M. ; Kousar, N. ; Mahmood, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-b58f9ea8783e5770bbeeb8131882c052d9514d24902fd73ceb5ee307aeee95593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Non-Newtonian fluids</topic><topic>Numerical analysis</topic><topic>Reynolds number</topic><topic>Solvers</topic><topic>Viscosity</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabeen, K.</creatorcontrib><creatorcontrib>Yaqub, M.</creatorcontrib><creatorcontrib>Kousar, N.</creatorcontrib><creatorcontrib>Mahmood, R.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabeen, K.</au><au>Yaqub, M.</au><au>Kousar, N.</au><au>Mahmood, R.</au><au>Yu, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulations of the Square Lid Driven Cavity Flow of Bingham Fluids Using Nonconforming Finite Elements Coupled with a Direct Solver</atitle><jtitle>Advances in mathematical physics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>In this paper, numerical simulations are performed in a single and double lid driven square cavity to study the flow of a Bingham viscoplastic fluid. The governing equations are discretized with the help of finite element method in space and the nonconforming Stokes element Q~1/Q0 is utilized which gives 2nd-order accuracy for velocity and 1st-order accuracy for pressure. The discretized systems of nonlinear equations are treated by using the Newton method and the inner linear subproablems are solved by the direct solver UMFPACK. A qualitative comparison is done with the results reported in the literature. In addition to these comparisons, some new reference data for the kinetic energy is generated. All these implementations are done in the open source software package FEATFLOW which is a general purpose finite element based solver package for solving partial differential equations.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/5210708</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1251-5525</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9120 |
ispartof | Advances in mathematical physics, 2017-01, Vol.2017 (2017), p.1-10 |
issn | 1687-9120 1687-9139 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d7aeeb70bb4b4736a6816a1d717a50f2 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access |
subjects | Accuracy Computational fluid dynamics Computer simulation Energy Finite element analysis Finite element method Fluid flow Mathematical analysis Mathematical models Methods Non-Newtonian fluids Numerical analysis Reynolds number Solvers Viscosity Yield stress |
title | Numerical Simulations of the Square Lid Driven Cavity Flow of Bingham Fluids Using Nonconforming Finite Elements Coupled with a Direct Solver |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulations%20of%20the%20Square%20Lid%20Driven%20Cavity%20Flow%20of%20Bingham%20Fluids%20Using%20Nonconforming%20Finite%20Elements%20Coupled%20with%20a%20Direct%20Solver&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Jabeen,%20K.&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2017/5210708&rft_dat=%3Cproquest_doaj_%3E1904223652%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-b58f9ea8783e5770bbeeb8131882c052d9514d24902fd73ceb5ee307aeee95593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1883172696&rft_id=info:pmid/&rfr_iscdi=true |