Loading…

Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements

Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise es...

Full description

Saved in:
Bibliographic Details
Published in:The cryosphere 2019-11, Vol.13 (11), p.3117-3137
Main Authors: Köhler, Andreas, PÄtlicki, Michal, Lefeuvre, Pierre-Marie, Buscaino, Giuseppa, Nuth, Christopher, Weidle, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3
cites cdi_FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3
container_end_page 3137
container_issue 11
container_start_page 3117
container_title The cryosphere
container_volume 13
creator Köhler, Andreas
PÄtlicki, Michal
Lefeuvre, Pierre-Marie
Buscaino, Giuseppa
Nuth, Christopher
Weidle, Christian
description Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise estimates of calving volumes at the same temporal resolution. We combine seismic and hydroacoustic observations close to the calving front of Kronebreen, a marine-terminating glacier in Svalbard, with repeat lidar scanning of the glacier front. Simultaneous time-lapse photography is used to assign volumes measured from lidar scans to seismically detected calving events. Empirical models derived from signal properties such as integrated amplitude are able to replicate volumes of individual calving events and cumulative subaerial ice loss over different lidar scan intervals from seismic and hydroacoustic data alone. This enables quantification of the contribution of calving to frontal ablation, which we estimate for Kronebreen to be about 18 %–30 %, slightly below the subaerially exposed area of the glacier front. We further develop a model calibrated for the permanent seismic Kings Bay station (KBS) at about 15 km distance from the glacier front, where 15 %–60 % of calving events can be detected under variable noise conditions due to reduced signal amplitudes at distance. Between 2007 and 2017, we find a 5 %–30 % contribution of calving ice blocks to frontal ablation, which emphasizes the importance of underwater melting (roughly 4–9 m d−1). This study shows the feasibility to seismically monitor not only frontal ablation rates but also the dynamic ice loss contribution continuously and at high temporal resolution.
doi_str_mv 10.5194/tc-13-3117-2019
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7bf67cf4a814b3d828a58a3a8a4f5ba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A606833142</galeid><doaj_id>oai_doaj_org_article_d7bf67cf4a814b3d828a58a3a8a4f5ba</doaj_id><sourcerecordid>A606833142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3</originalsourceid><addsrcrecordid>eNptksuKFDEUhgtRcBxduw24clEzuVWlshwaLw0Dgpd1OLn1pKmqzCSp0XkI38Fn8clMdYvaIFkk_Of7_-SE0zQvCb7oiOSXxbSEtYwQ0VJM5KPmjEjJW8wpf_zP-WnzLOc9xj2VmJ813zdxLinopYQ4o-iRgfE-zDtUIvKp1mBEoEc4lO8WmEvwwdm1NqHsQp6CQTBbdPNgUwQTl1yqEnV26f7gymtk0AlKtX0N5QaNwUJC93FcJvfzx-QgL8lNbi75efPEw5jdi9_7efPl7ZvPm_ft9Yd3283VdWu4EKUVdODUQi8tFk5y3wkQkjOJpXaeau0FByqNY9Jp1hlDBeOeD94xhkFSYOfN9phrI-zVbQoTpAcVIaiDENNOQap9jE5ZoX0vjOcwEK6ZHegA3QAMBqgX6zXr1THrNsW7xeWi9nFJc32-ooyIyndd_5faQQ0Ns48lgZlCNuqqx_3AGOG0Uhf_oeqyrv5znJ0PVT8xvD4xVKa4b2UHS85q--njKXt5ZE2KOSfn_zROsFpHSBWjCFPrCKl1hNgvkhi8GQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317828556</pqid></control><display><type>article</type><title>Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements</title><source>Publicly Available Content Database</source><creator>Köhler, Andreas ; PÄtlicki, Michal ; Lefeuvre, Pierre-Marie ; Buscaino, Giuseppa ; Nuth, Christopher ; Weidle, Christian</creator><creatorcontrib>Köhler, Andreas ; PÄtlicki, Michal ; Lefeuvre, Pierre-Marie ; Buscaino, Giuseppa ; Nuth, Christopher ; Weidle, Christian</creatorcontrib><description>Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise estimates of calving volumes at the same temporal resolution. We combine seismic and hydroacoustic observations close to the calving front of Kronebreen, a marine-terminating glacier in Svalbard, with repeat lidar scanning of the glacier front. Simultaneous time-lapse photography is used to assign volumes measured from lidar scans to seismically detected calving events. Empirical models derived from signal properties such as integrated amplitude are able to replicate volumes of individual calving events and cumulative subaerial ice loss over different lidar scan intervals from seismic and hydroacoustic data alone. This enables quantification of the contribution of calving to frontal ablation, which we estimate for Kronebreen to be about 18 %–30 %, slightly below the subaerially exposed area of the glacier front. We further develop a model calibrated for the permanent seismic Kings Bay station (KBS) at about 15 km distance from the glacier front, where 15 %–60 % of calving events can be detected under variable noise conditions due to reduced signal amplitudes at distance. Between 2007 and 2017, we find a 5 %–30 % contribution of calving ice blocks to frontal ablation, which emphasizes the importance of underwater melting (roughly 4–9 m d−1). This study shows the feasibility to seismically monitor not only frontal ablation rates but also the dynamic ice loss contribution continuously and at high temporal resolution.</description><identifier>ISSN: 1994-0424</identifier><identifier>ISSN: 1994-0416</identifier><identifier>EISSN: 1994-0424</identifier><identifier>EISSN: 1994-0416</identifier><identifier>DOI: 10.5194/tc-13-3117-2019</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Ablation ; Acoustics ; Amplitudes ; Analysis ; Calibration ; Cameras ; Distance ; Earthquakes ; Empirical models ; Feasibility studies ; Glacier fronts ; Glaciers ; Ice ; Ice calving ; Lidar ; Lidar measurements ; Mass balance ; Mass balance of glaciers ; Optical radar ; Photography ; Remote sensing ; Resolution ; Seismic activity ; Seismograms ; Temporal resolution ; Tidewater ; Time series ; Underwater ; Underwater acoustics ; Unmanned aerial vehicles</subject><ispartof>The cryosphere, 2019-11, Vol.13 (11), p.3117-3137</ispartof><rights>COPYRIGHT 2019 Copernicus GmbH</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3</citedby><cites>FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3</cites><orcidid>0000-0003-3383-2586 ; 0000-0002-1060-7637 ; 0000-0002-1063-2832 ; 0000-0002-4848-4185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2317828556/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2317828556?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Köhler, Andreas</creatorcontrib><creatorcontrib>PÄtlicki, Michal</creatorcontrib><creatorcontrib>Lefeuvre, Pierre-Marie</creatorcontrib><creatorcontrib>Buscaino, Giuseppa</creatorcontrib><creatorcontrib>Nuth, Christopher</creatorcontrib><creatorcontrib>Weidle, Christian</creatorcontrib><title>Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements</title><title>The cryosphere</title><description>Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise estimates of calving volumes at the same temporal resolution. We combine seismic and hydroacoustic observations close to the calving front of Kronebreen, a marine-terminating glacier in Svalbard, with repeat lidar scanning of the glacier front. Simultaneous time-lapse photography is used to assign volumes measured from lidar scans to seismically detected calving events. Empirical models derived from signal properties such as integrated amplitude are able to replicate volumes of individual calving events and cumulative subaerial ice loss over different lidar scan intervals from seismic and hydroacoustic data alone. This enables quantification of the contribution of calving to frontal ablation, which we estimate for Kronebreen to be about 18 %–30 %, slightly below the subaerially exposed area of the glacier front. We further develop a model calibrated for the permanent seismic Kings Bay station (KBS) at about 15 km distance from the glacier front, where 15 %–60 % of calving events can be detected under variable noise conditions due to reduced signal amplitudes at distance. Between 2007 and 2017, we find a 5 %–30 % contribution of calving ice blocks to frontal ablation, which emphasizes the importance of underwater melting (roughly 4–9 m d−1). This study shows the feasibility to seismically monitor not only frontal ablation rates but also the dynamic ice loss contribution continuously and at high temporal resolution.</description><subject>Ablation</subject><subject>Acoustics</subject><subject>Amplitudes</subject><subject>Analysis</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Distance</subject><subject>Earthquakes</subject><subject>Empirical models</subject><subject>Feasibility studies</subject><subject>Glacier fronts</subject><subject>Glaciers</subject><subject>Ice</subject><subject>Ice calving</subject><subject>Lidar</subject><subject>Lidar measurements</subject><subject>Mass balance</subject><subject>Mass balance of glaciers</subject><subject>Optical radar</subject><subject>Photography</subject><subject>Remote sensing</subject><subject>Resolution</subject><subject>Seismic activity</subject><subject>Seismograms</subject><subject>Temporal resolution</subject><subject>Tidewater</subject><subject>Time series</subject><subject>Underwater</subject><subject>Underwater acoustics</subject><subject>Unmanned aerial vehicles</subject><issn>1994-0424</issn><issn>1994-0416</issn><issn>1994-0424</issn><issn>1994-0416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksuKFDEUhgtRcBxduw24clEzuVWlshwaLw0Dgpd1OLn1pKmqzCSp0XkI38Fn8clMdYvaIFkk_Of7_-SE0zQvCb7oiOSXxbSEtYwQ0VJM5KPmjEjJW8wpf_zP-WnzLOc9xj2VmJ813zdxLinopYQ4o-iRgfE-zDtUIvKp1mBEoEc4lO8WmEvwwdm1NqHsQp6CQTBbdPNgUwQTl1yqEnV26f7gymtk0AlKtX0N5QaNwUJC93FcJvfzx-QgL8lNbi75efPEw5jdi9_7efPl7ZvPm_ft9Yd3283VdWu4EKUVdODUQi8tFk5y3wkQkjOJpXaeau0FByqNY9Jp1hlDBeOeD94xhkFSYOfN9phrI-zVbQoTpAcVIaiDENNOQap9jE5ZoX0vjOcwEK6ZHegA3QAMBqgX6zXr1THrNsW7xeWi9nFJc32-ooyIyndd_5faQQ0Ns48lgZlCNuqqx_3AGOG0Uhf_oeqyrv5znJ0PVT8xvD4xVKa4b2UHS85q--njKXt5ZE2KOSfn_zROsFpHSBWjCFPrCKl1hNgvkhi8GQ</recordid><startdate>20191126</startdate><enddate>20191126</enddate><creator>Köhler, Andreas</creator><creator>PÄtlicki, Michal</creator><creator>Lefeuvre, Pierre-Marie</creator><creator>Buscaino, Giuseppa</creator><creator>Nuth, Christopher</creator><creator>Weidle, Christian</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3383-2586</orcidid><orcidid>https://orcid.org/0000-0002-1060-7637</orcidid><orcidid>https://orcid.org/0000-0002-1063-2832</orcidid><orcidid>https://orcid.org/0000-0002-4848-4185</orcidid></search><sort><creationdate>20191126</creationdate><title>Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements</title><author>Köhler, Andreas ; PÄtlicki, Michal ; Lefeuvre, Pierre-Marie ; Buscaino, Giuseppa ; Nuth, Christopher ; Weidle, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ablation</topic><topic>Acoustics</topic><topic>Amplitudes</topic><topic>Analysis</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Distance</topic><topic>Earthquakes</topic><topic>Empirical models</topic><topic>Feasibility studies</topic><topic>Glacier fronts</topic><topic>Glaciers</topic><topic>Ice</topic><topic>Ice calving</topic><topic>Lidar</topic><topic>Lidar measurements</topic><topic>Mass balance</topic><topic>Mass balance of glaciers</topic><topic>Optical radar</topic><topic>Photography</topic><topic>Remote sensing</topic><topic>Resolution</topic><topic>Seismic activity</topic><topic>Seismograms</topic><topic>Temporal resolution</topic><topic>Tidewater</topic><topic>Time series</topic><topic>Underwater</topic><topic>Underwater acoustics</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Köhler, Andreas</creatorcontrib><creatorcontrib>PÄtlicki, Michal</creatorcontrib><creatorcontrib>Lefeuvre, Pierre-Marie</creatorcontrib><creatorcontrib>Buscaino, Giuseppa</creatorcontrib><creatorcontrib>Nuth, Christopher</creatorcontrib><creatorcontrib>Weidle, Christian</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>The cryosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Köhler, Andreas</au><au>PÄtlicki, Michal</au><au>Lefeuvre, Pierre-Marie</au><au>Buscaino, Giuseppa</au><au>Nuth, Christopher</au><au>Weidle, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements</atitle><jtitle>The cryosphere</jtitle><date>2019-11-26</date><risdate>2019</risdate><volume>13</volume><issue>11</issue><spage>3117</spage><epage>3137</epage><pages>3117-3137</pages><issn>1994-0424</issn><issn>1994-0416</issn><eissn>1994-0424</eissn><eissn>1994-0416</eissn><abstract>Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise estimates of calving volumes at the same temporal resolution. We combine seismic and hydroacoustic observations close to the calving front of Kronebreen, a marine-terminating glacier in Svalbard, with repeat lidar scanning of the glacier front. Simultaneous time-lapse photography is used to assign volumes measured from lidar scans to seismically detected calving events. Empirical models derived from signal properties such as integrated amplitude are able to replicate volumes of individual calving events and cumulative subaerial ice loss over different lidar scan intervals from seismic and hydroacoustic data alone. This enables quantification of the contribution of calving to frontal ablation, which we estimate for Kronebreen to be about 18 %–30 %, slightly below the subaerially exposed area of the glacier front. We further develop a model calibrated for the permanent seismic Kings Bay station (KBS) at about 15 km distance from the glacier front, where 15 %–60 % of calving events can be detected under variable noise conditions due to reduced signal amplitudes at distance. Between 2007 and 2017, we find a 5 %–30 % contribution of calving ice blocks to frontal ablation, which emphasizes the importance of underwater melting (roughly 4–9 m d−1). This study shows the feasibility to seismically monitor not only frontal ablation rates but also the dynamic ice loss contribution continuously and at high temporal resolution.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/tc-13-3117-2019</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3383-2586</orcidid><orcidid>https://orcid.org/0000-0002-1060-7637</orcidid><orcidid>https://orcid.org/0000-0002-1063-2832</orcidid><orcidid>https://orcid.org/0000-0002-4848-4185</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1994-0424
ispartof The cryosphere, 2019-11, Vol.13 (11), p.3117-3137
issn 1994-0424
1994-0416
1994-0424
1994-0416
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d7bf67cf4a814b3d828a58a3a8a4f5ba
source Publicly Available Content Database
subjects Ablation
Acoustics
Amplitudes
Analysis
Calibration
Cameras
Distance
Earthquakes
Empirical models
Feasibility studies
Glacier fronts
Glaciers
Ice
Ice calving
Lidar
Lidar measurements
Mass balance
Mass balance of glaciers
Optical radar
Photography
Remote sensing
Resolution
Seismic activity
Seismograms
Temporal resolution
Tidewater
Time series
Underwater
Underwater acoustics
Unmanned aerial vehicles
title Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20calving%20to%20frontal%20ablation%20quantified%20from%20seismic%20and%20hydroacoustic%20observations%20calibrated%20with%20lidar%20volume%C2%A0measurements&rft.jtitle=The%20cryosphere&rft.au=K%C3%B6hler,%20Andreas&rft.date=2019-11-26&rft.volume=13&rft.issue=11&rft.spage=3117&rft.epage=3137&rft.pages=3117-3137&rft.issn=1994-0424&rft.eissn=1994-0424&rft_id=info:doi/10.5194/tc-13-3117-2019&rft_dat=%3Cgale_doaj_%3EA606833142%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2317828556&rft_id=info:pmid/&rft_galeid=A606833142&rfr_iscdi=true