Loading…
Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements
Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise es...
Saved in:
Published in: | The cryosphere 2019-11, Vol.13 (11), p.3117-3137 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3 |
container_end_page | 3137 |
container_issue | 11 |
container_start_page | 3117 |
container_title | The cryosphere |
container_volume | 13 |
creator | Köhler, Andreas PÄtlicki, Michal Lefeuvre, Pierre-Marie Buscaino, Giuseppa Nuth, Christopher Weidle, Christian |
description | Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise estimates of calving volumes at the same temporal resolution. We combine seismic and hydroacoustic observations close to the calving front of Kronebreen, a marine-terminating glacier in Svalbard, with repeat lidar scanning of the glacier front. Simultaneous time-lapse photography is used to assign volumes measured from lidar scans to seismically detected calving events. Empirical models derived from signal properties such as integrated amplitude are able to replicate volumes of individual calving events and cumulative subaerial ice loss over different lidar scan intervals from seismic and hydroacoustic data alone. This enables quantification of the contribution of calving to frontal ablation, which we estimate for Kronebreen to be about 18 %–30 %, slightly below the subaerially exposed area of the glacier front. We further develop a model calibrated for the permanent seismic Kings Bay station (KBS) at about 15 km distance from the glacier front, where 15 %–60 % of calving events can be detected under variable noise conditions due to reduced signal amplitudes at distance. Between 2007 and 2017, we find a 5 %–30 % contribution of calving ice blocks to frontal ablation, which emphasizes the importance of underwater melting (roughly 4–9 m d−1). This study shows the feasibility to seismically monitor not only frontal ablation rates but also the dynamic ice loss contribution continuously and at high temporal resolution. |
doi_str_mv | 10.5194/tc-13-3117-2019 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7bf67cf4a814b3d828a58a3a8a4f5ba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A606833142</galeid><doaj_id>oai_doaj_org_article_d7bf67cf4a814b3d828a58a3a8a4f5ba</doaj_id><sourcerecordid>A606833142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3</originalsourceid><addsrcrecordid>eNptksuKFDEUhgtRcBxduw24clEzuVWlshwaLw0Dgpd1OLn1pKmqzCSp0XkI38Fn8clMdYvaIFkk_Of7_-SE0zQvCb7oiOSXxbSEtYwQ0VJM5KPmjEjJW8wpf_zP-WnzLOc9xj2VmJ813zdxLinopYQ4o-iRgfE-zDtUIvKp1mBEoEc4lO8WmEvwwdm1NqHsQp6CQTBbdPNgUwQTl1yqEnV26f7gymtk0AlKtX0N5QaNwUJC93FcJvfzx-QgL8lNbi75efPEw5jdi9_7efPl7ZvPm_ft9Yd3283VdWu4EKUVdODUQi8tFk5y3wkQkjOJpXaeau0FByqNY9Jp1hlDBeOeD94xhkFSYOfN9phrI-zVbQoTpAcVIaiDENNOQap9jE5ZoX0vjOcwEK6ZHegA3QAMBqgX6zXr1THrNsW7xeWi9nFJc32-ooyIyndd_5faQQ0Ns48lgZlCNuqqx_3AGOG0Uhf_oeqyrv5znJ0PVT8xvD4xVKa4b2UHS85q--njKXt5ZE2KOSfn_zROsFpHSBWjCFPrCKl1hNgvkhi8GQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317828556</pqid></control><display><type>article</type><title>Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements</title><source>Publicly Available Content Database</source><creator>Köhler, Andreas ; PÄtlicki, Michal ; Lefeuvre, Pierre-Marie ; Buscaino, Giuseppa ; Nuth, Christopher ; Weidle, Christian</creator><creatorcontrib>Köhler, Andreas ; PÄtlicki, Michal ; Lefeuvre, Pierre-Marie ; Buscaino, Giuseppa ; Nuth, Christopher ; Weidle, Christian</creatorcontrib><description>Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise estimates of calving volumes at the same temporal resolution. We combine seismic and hydroacoustic observations close to the calving front of Kronebreen, a marine-terminating glacier in Svalbard, with repeat lidar scanning of the glacier front. Simultaneous time-lapse photography is used to assign volumes measured from lidar scans to seismically detected calving events. Empirical models derived from signal properties such as integrated amplitude are able to replicate volumes of individual calving events and cumulative subaerial ice loss over different lidar scan intervals from seismic and hydroacoustic data alone. This enables quantification of the contribution of calving to frontal ablation, which we estimate for Kronebreen to be about 18 %–30 %, slightly below the subaerially exposed area of the glacier front. We further develop a model calibrated for the permanent seismic Kings Bay station (KBS) at about 15 km distance from the glacier front, where 15 %–60 % of calving events can be detected under variable noise conditions due to reduced signal amplitudes at distance. Between 2007 and 2017, we find a 5 %–30 % contribution of calving ice blocks to frontal ablation, which emphasizes the importance of underwater melting (roughly 4–9 m d−1). This study shows the feasibility to seismically monitor not only frontal ablation rates but also the dynamic ice loss contribution continuously and at high temporal resolution.</description><identifier>ISSN: 1994-0424</identifier><identifier>ISSN: 1994-0416</identifier><identifier>EISSN: 1994-0424</identifier><identifier>EISSN: 1994-0416</identifier><identifier>DOI: 10.5194/tc-13-3117-2019</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Ablation ; Acoustics ; Amplitudes ; Analysis ; Calibration ; Cameras ; Distance ; Earthquakes ; Empirical models ; Feasibility studies ; Glacier fronts ; Glaciers ; Ice ; Ice calving ; Lidar ; Lidar measurements ; Mass balance ; Mass balance of glaciers ; Optical radar ; Photography ; Remote sensing ; Resolution ; Seismic activity ; Seismograms ; Temporal resolution ; Tidewater ; Time series ; Underwater ; Underwater acoustics ; Unmanned aerial vehicles</subject><ispartof>The cryosphere, 2019-11, Vol.13 (11), p.3117-3137</ispartof><rights>COPYRIGHT 2019 Copernicus GmbH</rights><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3</citedby><cites>FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3</cites><orcidid>0000-0003-3383-2586 ; 0000-0002-1060-7637 ; 0000-0002-1063-2832 ; 0000-0002-4848-4185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2317828556/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2317828556?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Köhler, Andreas</creatorcontrib><creatorcontrib>PÄtlicki, Michal</creatorcontrib><creatorcontrib>Lefeuvre, Pierre-Marie</creatorcontrib><creatorcontrib>Buscaino, Giuseppa</creatorcontrib><creatorcontrib>Nuth, Christopher</creatorcontrib><creatorcontrib>Weidle, Christian</creatorcontrib><title>Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements</title><title>The cryosphere</title><description>Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise estimates of calving volumes at the same temporal resolution. We combine seismic and hydroacoustic observations close to the calving front of Kronebreen, a marine-terminating glacier in Svalbard, with repeat lidar scanning of the glacier front. Simultaneous time-lapse photography is used to assign volumes measured from lidar scans to seismically detected calving events. Empirical models derived from signal properties such as integrated amplitude are able to replicate volumes of individual calving events and cumulative subaerial ice loss over different lidar scan intervals from seismic and hydroacoustic data alone. This enables quantification of the contribution of calving to frontal ablation, which we estimate for Kronebreen to be about 18 %–30 %, slightly below the subaerially exposed area of the glacier front. We further develop a model calibrated for the permanent seismic Kings Bay station (KBS) at about 15 km distance from the glacier front, where 15 %–60 % of calving events can be detected under variable noise conditions due to reduced signal amplitudes at distance. Between 2007 and 2017, we find a 5 %–30 % contribution of calving ice blocks to frontal ablation, which emphasizes the importance of underwater melting (roughly 4–9 m d−1). This study shows the feasibility to seismically monitor not only frontal ablation rates but also the dynamic ice loss contribution continuously and at high temporal resolution.</description><subject>Ablation</subject><subject>Acoustics</subject><subject>Amplitudes</subject><subject>Analysis</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Distance</subject><subject>Earthquakes</subject><subject>Empirical models</subject><subject>Feasibility studies</subject><subject>Glacier fronts</subject><subject>Glaciers</subject><subject>Ice</subject><subject>Ice calving</subject><subject>Lidar</subject><subject>Lidar measurements</subject><subject>Mass balance</subject><subject>Mass balance of glaciers</subject><subject>Optical radar</subject><subject>Photography</subject><subject>Remote sensing</subject><subject>Resolution</subject><subject>Seismic activity</subject><subject>Seismograms</subject><subject>Temporal resolution</subject><subject>Tidewater</subject><subject>Time series</subject><subject>Underwater</subject><subject>Underwater acoustics</subject><subject>Unmanned aerial vehicles</subject><issn>1994-0424</issn><issn>1994-0416</issn><issn>1994-0424</issn><issn>1994-0416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptksuKFDEUhgtRcBxduw24clEzuVWlshwaLw0Dgpd1OLn1pKmqzCSp0XkI38Fn8clMdYvaIFkk_Of7_-SE0zQvCb7oiOSXxbSEtYwQ0VJM5KPmjEjJW8wpf_zP-WnzLOc9xj2VmJ813zdxLinopYQ4o-iRgfE-zDtUIvKp1mBEoEc4lO8WmEvwwdm1NqHsQp6CQTBbdPNgUwQTl1yqEnV26f7gymtk0AlKtX0N5QaNwUJC93FcJvfzx-QgL8lNbi75efPEw5jdi9_7efPl7ZvPm_ft9Yd3283VdWu4EKUVdODUQi8tFk5y3wkQkjOJpXaeau0FByqNY9Jp1hlDBeOeD94xhkFSYOfN9phrI-zVbQoTpAcVIaiDENNOQap9jE5ZoX0vjOcwEK6ZHegA3QAMBqgX6zXr1THrNsW7xeWi9nFJc32-ooyIyndd_5faQQ0Ns48lgZlCNuqqx_3AGOG0Uhf_oeqyrv5znJ0PVT8xvD4xVKa4b2UHS85q--njKXt5ZE2KOSfn_zROsFpHSBWjCFPrCKl1hNgvkhi8GQ</recordid><startdate>20191126</startdate><enddate>20191126</enddate><creator>Köhler, Andreas</creator><creator>PÄtlicki, Michal</creator><creator>Lefeuvre, Pierre-Marie</creator><creator>Buscaino, Giuseppa</creator><creator>Nuth, Christopher</creator><creator>Weidle, Christian</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3383-2586</orcidid><orcidid>https://orcid.org/0000-0002-1060-7637</orcidid><orcidid>https://orcid.org/0000-0002-1063-2832</orcidid><orcidid>https://orcid.org/0000-0002-4848-4185</orcidid></search><sort><creationdate>20191126</creationdate><title>Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements</title><author>Köhler, Andreas ; PÄtlicki, Michal ; Lefeuvre, Pierre-Marie ; Buscaino, Giuseppa ; Nuth, Christopher ; Weidle, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ablation</topic><topic>Acoustics</topic><topic>Amplitudes</topic><topic>Analysis</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Distance</topic><topic>Earthquakes</topic><topic>Empirical models</topic><topic>Feasibility studies</topic><topic>Glacier fronts</topic><topic>Glaciers</topic><topic>Ice</topic><topic>Ice calving</topic><topic>Lidar</topic><topic>Lidar measurements</topic><topic>Mass balance</topic><topic>Mass balance of glaciers</topic><topic>Optical radar</topic><topic>Photography</topic><topic>Remote sensing</topic><topic>Resolution</topic><topic>Seismic activity</topic><topic>Seismograms</topic><topic>Temporal resolution</topic><topic>Tidewater</topic><topic>Time series</topic><topic>Underwater</topic><topic>Underwater acoustics</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Köhler, Andreas</creatorcontrib><creatorcontrib>PÄtlicki, Michal</creatorcontrib><creatorcontrib>Lefeuvre, Pierre-Marie</creatorcontrib><creatorcontrib>Buscaino, Giuseppa</creatorcontrib><creatorcontrib>Nuth, Christopher</creatorcontrib><creatorcontrib>Weidle, Christian</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>The cryosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Köhler, Andreas</au><au>PÄtlicki, Michal</au><au>Lefeuvre, Pierre-Marie</au><au>Buscaino, Giuseppa</au><au>Nuth, Christopher</au><au>Weidle, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements</atitle><jtitle>The cryosphere</jtitle><date>2019-11-26</date><risdate>2019</risdate><volume>13</volume><issue>11</issue><spage>3117</spage><epage>3137</epage><pages>3117-3137</pages><issn>1994-0424</issn><issn>1994-0416</issn><eissn>1994-0424</eissn><eissn>1994-0416</eissn><abstract>Frontal ablation contributes significantly to the mass balance of tidewater glaciers in Svalbard and can be recovered with high temporal resolution using continuous seismic records. Determination of the relative contribution of dynamic ice loss through calving to frontal ablation requires precise estimates of calving volumes at the same temporal resolution. We combine seismic and hydroacoustic observations close to the calving front of Kronebreen, a marine-terminating glacier in Svalbard, with repeat lidar scanning of the glacier front. Simultaneous time-lapse photography is used to assign volumes measured from lidar scans to seismically detected calving events. Empirical models derived from signal properties such as integrated amplitude are able to replicate volumes of individual calving events and cumulative subaerial ice loss over different lidar scan intervals from seismic and hydroacoustic data alone. This enables quantification of the contribution of calving to frontal ablation, which we estimate for Kronebreen to be about 18 %–30 %, slightly below the subaerially exposed area of the glacier front. We further develop a model calibrated for the permanent seismic Kings Bay station (KBS) at about 15 km distance from the glacier front, where 15 %–60 % of calving events can be detected under variable noise conditions due to reduced signal amplitudes at distance. Between 2007 and 2017, we find a 5 %–30 % contribution of calving ice blocks to frontal ablation, which emphasizes the importance of underwater melting (roughly 4–9 m d−1). This study shows the feasibility to seismically monitor not only frontal ablation rates but also the dynamic ice loss contribution continuously and at high temporal resolution.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/tc-13-3117-2019</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3383-2586</orcidid><orcidid>https://orcid.org/0000-0002-1060-7637</orcidid><orcidid>https://orcid.org/0000-0002-1063-2832</orcidid><orcidid>https://orcid.org/0000-0002-4848-4185</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1994-0424 |
ispartof | The cryosphere, 2019-11, Vol.13 (11), p.3117-3137 |
issn | 1994-0424 1994-0416 1994-0424 1994-0416 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d7bf67cf4a814b3d828a58a3a8a4f5ba |
source | Publicly Available Content Database |
subjects | Ablation Acoustics Amplitudes Analysis Calibration Cameras Distance Earthquakes Empirical models Feasibility studies Glacier fronts Glaciers Ice Ice calving Lidar Lidar measurements Mass balance Mass balance of glaciers Optical radar Photography Remote sensing Resolution Seismic activity Seismograms Temporal resolution Tidewater Time series Underwater Underwater acoustics Unmanned aerial vehicles |
title | Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20calving%20to%20frontal%20ablation%20quantified%20from%20seismic%20and%20hydroacoustic%20observations%20calibrated%20with%20lidar%20volume%C2%A0measurements&rft.jtitle=The%20cryosphere&rft.au=K%C3%B6hler,%20Andreas&rft.date=2019-11-26&rft.volume=13&rft.issue=11&rft.spage=3117&rft.epage=3137&rft.pages=3117-3137&rft.issn=1994-0424&rft.eissn=1994-0424&rft_id=info:doi/10.5194/tc-13-3117-2019&rft_dat=%3Cgale_doaj_%3EA606833142%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-72842da69d07e94f57a7943909bef2bbf74a29ce39eb35cc2734f48fe330a92a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2317828556&rft_id=info:pmid/&rft_galeid=A606833142&rfr_iscdi=true |