Loading…
The Existence of Solutions to a System of Discrete Fractional Boundary Value Problems
We study the existence of solutions for the boundary value problem -Δνy1(t)=f(y1(t+ν-1),y2(t+μ-1)), -Δμy2(t)=g(y1(t+ν-1),y2(t+μ-1)), y1(ν-2)=Δy1(ν+b)=0, y2(μ-2)=Δy2(μ+b)=0, where 1
Saved in:
Published in: | Abstract and Applied Analysis 2012-01, Vol.2012 (2012), p.798-812-552 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a486t-ef19bdf2f9d0f128ac8d1aff035abe116b731a3006d9310e97be56e3293d00923 |
---|---|
cites | cdi_FETCH-LOGICAL-a486t-ef19bdf2f9d0f128ac8d1aff035abe116b731a3006d9310e97be56e3293d00923 |
container_end_page | 812-552 |
container_issue | 2012 |
container_start_page | 798 |
container_title | Abstract and Applied Analysis |
container_volume | 2012 |
creator | Pan, Yuanyuan Han, Zhen-Lai Sun, Shurong Zhao, Yige |
description | We study the existence of solutions for the boundary value problem -Δνy1(t)=f(y1(t+ν-1),y2(t+μ-1)), -Δμy2(t)=g(y1(t+ν-1),y2(t+μ-1)), y1(ν-2)=Δy1(ν+b)=0, y2(μ-2)=Δy2(μ+b)=0, where 1 |
doi_str_mv | 10.1155/2012/707631 |
format | article |
fullrecord | <record><control><sourceid>airiti_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7c071764d134ae1b039877ac80e2eb6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160825001_201212_201609090069_201609090069_798_812_552</airiti_id><doaj_id>oai_doaj_org_article_d7c071764d134ae1b039877ac80e2eb6</doaj_id><sourcerecordid>P20160825001_201212_201609090069_201609090069_798_812_552</sourcerecordid><originalsourceid>FETCH-LOGICAL-a486t-ef19bdf2f9d0f128ac8d1aff035abe116b731a3006d9310e97be56e3293d00923</originalsourceid><addsrcrecordid>eNqFkcFu1DAQQCMEEqVw4ozkMyh0Jo7t-AYsLVRaiZXa5Wo58Zh6lV1XTqLSv8fZrCr1hHywPfP8PPYUxXuEz4hCXFSA1YUCJTm-KM5QNqqEGvTLvIZGlJwr8bp4Mww7AOCqrs-K7e0dscu_YRjp0BGLnt3EfhpDPAxsjMyym8ec2s-J72HoEo3ErpLtZsL27FucDs6mR_bb9hOxTYptT_vhbfHK236gd6f5vNheXd6ufpbrXz-uV1_Xpa0bOZbkUbfOV1478Fg1tmscWu-BC9sSomwVR8sBpNMcgbRqSUjileYOQFf8vLhevC7anblPYZ9rMdEGcwzE9MfYNIauJ-NUBwqVrB3y2hK2wHWjVL4SqKJWZteXxXWf4o66kaauD-6ZdLVdn6KnyVprkAtRayHFXM6nRdGlOAyJ_NNpBDM3yMwNMkuDMv1xoe9C_sOH8B_4wwJTRsjbJ7jWFeq5-s2StyGFMZhdnFJu0GA22SKhqQQAHo3ZeQzpPEDq5xulG9NkQuTX_AOqGa69</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Existence of Solutions to a System of Discrete Fractional Boundary Value Problems</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Pan, Yuanyuan ; Han, Zhen-Lai ; Sun, Shurong ; Zhao, Yige</creator><contributor>Atici, Ferhan M.</contributor><creatorcontrib>Pan, Yuanyuan ; Han, Zhen-Lai ; Sun, Shurong ; Zhao, Yige ; Atici, Ferhan M.</creatorcontrib><description>We study the existence of solutions for the boundary value problem -Δνy1(t)=f(y1(t+ν-1),y2(t+μ-1)), -Δμy2(t)=g(y1(t+ν-1),y2(t+μ-1)), y1(ν-2)=Δy1(ν+b)=0, y2(μ-2)=Δy2(μ+b)=0, where 1<μ,ν≤2, f,g:R×R→R are continuous functions, b∈N0. The existence of solutions to this problem is established by the Guo-Krasnosel'kii theorem and the Schauder fixed-point theorem, and some examples are given to illustrate the main results.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2012/707631</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><ispartof>Abstract and Applied Analysis, 2012-01, Vol.2012 (2012), p.798-812-552</ispartof><rights>Copyright © 2012 Yuanyuan Pan et al.</rights><rights>Copyright 2012 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a486t-ef19bdf2f9d0f128ac8d1aff035abe116b731a3006d9310e97be56e3293d00923</citedby><cites>FETCH-LOGICAL-a486t-ef19bdf2f9d0f128ac8d1aff035abe116b731a3006d9310e97be56e3293d00923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><contributor>Atici, Ferhan M.</contributor><creatorcontrib>Pan, Yuanyuan</creatorcontrib><creatorcontrib>Han, Zhen-Lai</creatorcontrib><creatorcontrib>Sun, Shurong</creatorcontrib><creatorcontrib>Zhao, Yige</creatorcontrib><title>The Existence of Solutions to a System of Discrete Fractional Boundary Value Problems</title><title>Abstract and Applied Analysis</title><description>We study the existence of solutions for the boundary value problem -Δνy1(t)=f(y1(t+ν-1),y2(t+μ-1)), -Δμy2(t)=g(y1(t+ν-1),y2(t+μ-1)), y1(ν-2)=Δy1(ν+b)=0, y2(μ-2)=Δy2(μ+b)=0, where 1<μ,ν≤2, f,g:R×R→R are continuous functions, b∈N0. The existence of solutions to this problem is established by the Guo-Krasnosel'kii theorem and the Schauder fixed-point theorem, and some examples are given to illustrate the main results.</description><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkcFu1DAQQCMEEqVw4ozkMyh0Jo7t-AYsLVRaiZXa5Wo58Zh6lV1XTqLSv8fZrCr1hHywPfP8PPYUxXuEz4hCXFSA1YUCJTm-KM5QNqqEGvTLvIZGlJwr8bp4Mww7AOCqrs-K7e0dscu_YRjp0BGLnt3EfhpDPAxsjMyym8ec2s-J72HoEo3ErpLtZsL27FucDs6mR_bb9hOxTYptT_vhbfHK236gd6f5vNheXd6ufpbrXz-uV1_Xpa0bOZbkUbfOV1478Fg1tmscWu-BC9sSomwVR8sBpNMcgbRqSUjileYOQFf8vLhevC7anblPYZ9rMdEGcwzE9MfYNIauJ-NUBwqVrB3y2hK2wHWjVL4SqKJWZteXxXWf4o66kaauD-6ZdLVdn6KnyVprkAtRayHFXM6nRdGlOAyJ_NNpBDM3yMwNMkuDMv1xoe9C_sOH8B_4wwJTRsjbJ7jWFeq5-s2StyGFMZhdnFJu0GA22SKhqQQAHo3ZeQzpPEDq5xulG9NkQuTX_AOqGa69</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Pan, Yuanyuan</creator><creator>Han, Zhen-Lai</creator><creator>Sun, Shurong</creator><creator>Zhao, Yige</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20120101</creationdate><title>The Existence of Solutions to a System of Discrete Fractional Boundary Value Problems</title><author>Pan, Yuanyuan ; Han, Zhen-Lai ; Sun, Shurong ; Zhao, Yige</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a486t-ef19bdf2f9d0f128ac8d1aff035abe116b731a3006d9310e97be56e3293d00923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yuanyuan</creatorcontrib><creatorcontrib>Han, Zhen-Lai</creatorcontrib><creatorcontrib>Sun, Shurong</creatorcontrib><creatorcontrib>Zhao, Yige</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>DOAJ Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yuanyuan</au><au>Han, Zhen-Lai</au><au>Sun, Shurong</au><au>Zhao, Yige</au><au>Atici, Ferhan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Existence of Solutions to a System of Discrete Fractional Boundary Value Problems</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>798</spage><epage>812-552</epage><pages>798-812-552</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>We study the existence of solutions for the boundary value problem -Δνy1(t)=f(y1(t+ν-1),y2(t+μ-1)), -Δμy2(t)=g(y1(t+ν-1),y2(t+μ-1)), y1(ν-2)=Δy1(ν+b)=0, y2(μ-2)=Δy2(μ+b)=0, where 1<μ,ν≤2, f,g:R×R→R are continuous functions, b∈N0. The existence of solutions to this problem is established by the Guo-Krasnosel'kii theorem and the Schauder fixed-point theorem, and some examples are given to illustrate the main results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2012/707631</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and Applied Analysis, 2012-01, Vol.2012 (2012), p.798-812-552 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d7c071764d134ae1b039877ac80e2eb6 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
title | The Existence of Solutions to a System of Discrete Fractional Boundary Value Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-airiti_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Existence%20of%20Solutions%20to%20a%20System%20of%20Discrete%20Fractional%20Boundary%20Value%20Problems&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Pan,%20Yuanyuan&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=798&rft.epage=812-552&rft.pages=798-812-552&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2012/707631&rft_dat=%3Cairiti_doaj_%3EP20160825001_201212_201609090069_201609090069_798_812_552%3C/airiti_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a486t-ef19bdf2f9d0f128ac8d1aff035abe116b731a3006d9310e97be56e3293d00923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_airiti_id=P20160825001_201212_201609090069_201609090069_798_812_552&rfr_iscdi=true |