Loading…

Inventory and Historical Changes in the Marine Flora of Tomioka Peninsula (Amakusa Island), Japan

Intensive algal sampling was conducted from 2012 to 2017 in the Tomioka Peninsula, Amakusa-Shimoshima Island (the East China Sea, Japan), yielding a total of 293 benthic macroalgal taxa, of which 63% were red algae, 16% were brown algae, and 19% were green algae. The majority (69%) of species were p...

Full description

Saved in:
Bibliographic Details
Published in:Diversity (Basel) 2019-09, Vol.11 (9), p.158
Main Authors: Titlyanov, Eduard A., Titlyanova, Tamara V., Tokeshi, Mutsunori, Li, Xiubao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intensive algal sampling was conducted from 2012 to 2017 in the Tomioka Peninsula, Amakusa-Shimoshima Island (the East China Sea, Japan), yielding a total of 293 benthic macroalgal taxa, of which 63% were red algae, 16% were brown algae, and 19% were green algae. The majority (69%) of species were previously recorded only for the tropics and/or subtropics, whereas 31% of species were recorded for temperate latitudes. Among all species of algae found from 2012 to 2017 in the Tomioka Peninsula, 163 species (56%) were newly identified species for Amakusa-Shimoshima Island, including six taxa, which were recorded in Japan for the first time. Comparison of the current data from the Amakusa-Shimoshima Island with those of nearby tropical regions suggested that the recent marine flora of the Amakusa-Shimoshima Island was more closely affiliated with the flora of a warm-temperate region. Moreover, we found that the benthic flora of the Tomioka Peninsula was significantly changed between the 1950s (Segawa & Yoshida 1961) and 2012–2017. For example, the species diversity was increased by two times, mainly at the expense of red and green algae, and the biogeographic status of the benthic flora was changed from the flora of a cold-temperate region to the flora of a warm-temperate region, which could be attributed to an introduction of red algae from the tropics of South East Asia and widespread opportunistic green algae, as well as the disappearance of cold-water brown algae. Collectively, our data suggested that these changes were driven by the global warming effect on the ocean.
ISSN:1424-2818
1424-2818
DOI:10.3390/d11090158