Loading…

Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study

Background The 2017 Oxford classification of immunoglobulin A nephropathy (IgAN) recently reported that crescents could predict a worse renal outcome. Early prediction of crescent formation can help physicians determine the appropriate intervention, and thus, improve the outcomes. Therefore, we aime...

Full description

Saved in:
Bibliographic Details
Published in:BMC nephrology 2023-09, Vol.24 (1), p.1-262, Article 262
Main Authors: Lin, Zaoqiang, Feng, Liuchang, Zeng, Huan, Lin, Xuefei, Lin, Qizhan, Lu, Fuhua, Wang, Lixin, Mai, Jianling, Fang, Pingjun, Liu, Xusheng, Tan, Qinxiang, Zou, Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073
cites cdi_FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073
container_end_page 262
container_issue 1
container_start_page 1
container_title BMC nephrology
container_volume 24
creator Lin, Zaoqiang
Feng, Liuchang
Zeng, Huan
Lin, Xuefei
Lin, Qizhan
Lu, Fuhua
Wang, Lixin
Mai, Jianling
Fang, Pingjun
Liu, Xusheng
Tan, Qinxiang
Zou, Chuan
description Background The 2017 Oxford classification of immunoglobulin A nephropathy (IgAN) recently reported that crescents could predict a worse renal outcome. Early prediction of crescent formation can help physicians determine the appropriate intervention, and thus, improve the outcomes. Therefore, we aimed to establish a nomogram model for the prediction of crescent formation in IgA nephropathy patients. Methods We retrospectively analyzed 200 cases of biopsy-proven IgAN patients. Least absolute shrinkage and selection operator(LASSO) regression and multivariate logistic regression was applied to screen for influencing factors of crescent formation in IgAN patients. The performance of the proposed nomogram was evaluated based on Harrell's concordance index (C-index), calibration plot, and decision curve analysis. Results Multivariate logistic analysis showed that urinary protein [greater than or equal to] 1 g (OR = 3.129, 95%CI = 1.454-6.732), urinary red blood cell (URBC) counts [greater than or equal to] 30/ul (OR = 3.190, 95%CI = 1.590-6.402), mALBU [greater than or equal to] 1500 mg/L(OR = 2.330, 95%CI = 1.008-5.386), eGFR < 60ml/min/1.73m.sup.2(OR = 2.295, 95%CI = 1.016-5.187), Serum IgA/C3 ratio [greater than or equal to] 2.59 (OR = 2.505, 95%CI = 1.241-5.057), were independent risk factors for crescent formation. Incorporating these factors, our model achieved well-fitted calibration curves and a good C-index of 0.776 (95%CI [0.711-0.840]) in predicting crescent formation. Conclusions Our nomogram showed good calibration and was effective in predicting crescent formation risk in IgAN patients. Keywords: IgA nephropathy, Crescent, Prediction, Nomogram
doi_str_mv 10.1186/s12882-023-03310-2
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7f106d1b1784695be4e218c14d91d38</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A763413165</galeid><doaj_id>oai_doaj_org_article_d7f106d1b1784695be4e218c14d91d38</doaj_id><sourcerecordid>A763413165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073</originalsourceid><addsrcrecordid>eNptUk2PFCEQ7RiNu47-AU8kXrz0SgENtBez2fgxyUYveyc0VM8wmW5a6Nlk_r30zEYdY0iAFK9eVT1eVb0FegOg5YcMTGtWU8ZryjnQmj2rrkEoqBmX7fO_7lfVq5x3lILSgr6srriSUjFQ15X_Hoe4SXYgfUxk3iKZEvrg5hBHEnviEmaH47w8D_YUDSNZb27JiNM2xcnO2yMpeyig_JFYknBOMU9YKB6R5Pngj6-rF73dZ3zzdK6qhy-fH-6-1fc_vq7vbu9r1wiY615RjraTzEvXaiq161qphes77BUo26tGClQoNFLpigTCetC-RSYbTRVfVeszrY92Z6YUBpuOJtpgToGYNsamObg9Gq96oNJDtygi26ZDgQy0A-Fb8FwXrk9nrunQDegXCZLdX5Bevoxhazbx0QAVC-XSzfsnhhR_HjDPZghFyv3ejhgP2TAtgVPG2qXYu3-gu3hIY5FqQTVcN6W3P6iNLROEsY-lsFtIza2SXACHgl1VN_9BleVxCC6O2IcSv0hg5wRXvi0n7H8PCdQsPjNnn5niM3PymWH8F4MHw0o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865385218</pqid></control><display><type>article</type><title>Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Lin, Zaoqiang ; Feng, Liuchang ; Zeng, Huan ; Lin, Xuefei ; Lin, Qizhan ; Lu, Fuhua ; Wang, Lixin ; Mai, Jianling ; Fang, Pingjun ; Liu, Xusheng ; Tan, Qinxiang ; Zou, Chuan</creator><creatorcontrib>Lin, Zaoqiang ; Feng, Liuchang ; Zeng, Huan ; Lin, Xuefei ; Lin, Qizhan ; Lu, Fuhua ; Wang, Lixin ; Mai, Jianling ; Fang, Pingjun ; Liu, Xusheng ; Tan, Qinxiang ; Zou, Chuan</creatorcontrib><description>Background The 2017 Oxford classification of immunoglobulin A nephropathy (IgAN) recently reported that crescents could predict a worse renal outcome. Early prediction of crescent formation can help physicians determine the appropriate intervention, and thus, improve the outcomes. Therefore, we aimed to establish a nomogram model for the prediction of crescent formation in IgA nephropathy patients. Methods We retrospectively analyzed 200 cases of biopsy-proven IgAN patients. Least absolute shrinkage and selection operator(LASSO) regression and multivariate logistic regression was applied to screen for influencing factors of crescent formation in IgAN patients. The performance of the proposed nomogram was evaluated based on Harrell's concordance index (C-index), calibration plot, and decision curve analysis. Results Multivariate logistic analysis showed that urinary protein [greater than or equal to] 1 g (OR = 3.129, 95%CI = 1.454-6.732), urinary red blood cell (URBC) counts [greater than or equal to] 30/ul (OR = 3.190, 95%CI = 1.590-6.402), mALBU [greater than or equal to] 1500 mg/L(OR = 2.330, 95%CI = 1.008-5.386), eGFR &lt; 60ml/min/1.73m.sup.2(OR = 2.295, 95%CI = 1.016-5.187), Serum IgA/C3 ratio [greater than or equal to] 2.59 (OR = 2.505, 95%CI = 1.241-5.057), were independent risk factors for crescent formation. Incorporating these factors, our model achieved well-fitted calibration curves and a good C-index of 0.776 (95%CI [0.711-0.840]) in predicting crescent formation. Conclusions Our nomogram showed good calibration and was effective in predicting crescent formation risk in IgAN patients. Keywords: IgA nephropathy, Crescent, Prediction, Nomogram</description><identifier>ISSN: 1471-2369</identifier><identifier>EISSN: 1471-2369</identifier><identifier>DOI: 10.1186/s12882-023-03310-2</identifier><identifier>PMID: 37667217</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Analysis ; Atrophy ; Biopsy ; Body mass index ; Care and treatment ; Crescent ; Diagnosis ; Erythrocytes ; Histology, Pathological ; IgA glomerulonephritis ; IgA nephropathy ; Immunoglobulin A ; Kidney diseases ; Medical research ; Medicine, Experimental ; Nephrology ; Nomogram ; Nomograms ; Nomography (Mathematics) ; Prediction ; Predictions ; Prognosis ; Proteins ; Regression analysis ; Risk factors ; Variables</subject><ispartof>BMC nephrology, 2023-09, Vol.24 (1), p.1-262, Article 262</ispartof><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>BioMed Central Ltd., part of Springer Nature 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073</citedby><cites>FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478467/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2865385218?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids></links><search><creatorcontrib>Lin, Zaoqiang</creatorcontrib><creatorcontrib>Feng, Liuchang</creatorcontrib><creatorcontrib>Zeng, Huan</creatorcontrib><creatorcontrib>Lin, Xuefei</creatorcontrib><creatorcontrib>Lin, Qizhan</creatorcontrib><creatorcontrib>Lu, Fuhua</creatorcontrib><creatorcontrib>Wang, Lixin</creatorcontrib><creatorcontrib>Mai, Jianling</creatorcontrib><creatorcontrib>Fang, Pingjun</creatorcontrib><creatorcontrib>Liu, Xusheng</creatorcontrib><creatorcontrib>Tan, Qinxiang</creatorcontrib><creatorcontrib>Zou, Chuan</creatorcontrib><title>Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study</title><title>BMC nephrology</title><description>Background The 2017 Oxford classification of immunoglobulin A nephropathy (IgAN) recently reported that crescents could predict a worse renal outcome. Early prediction of crescent formation can help physicians determine the appropriate intervention, and thus, improve the outcomes. Therefore, we aimed to establish a nomogram model for the prediction of crescent formation in IgA nephropathy patients. Methods We retrospectively analyzed 200 cases of biopsy-proven IgAN patients. Least absolute shrinkage and selection operator(LASSO) regression and multivariate logistic regression was applied to screen for influencing factors of crescent formation in IgAN patients. The performance of the proposed nomogram was evaluated based on Harrell's concordance index (C-index), calibration plot, and decision curve analysis. Results Multivariate logistic analysis showed that urinary protein [greater than or equal to] 1 g (OR = 3.129, 95%CI = 1.454-6.732), urinary red blood cell (URBC) counts [greater than or equal to] 30/ul (OR = 3.190, 95%CI = 1.590-6.402), mALBU [greater than or equal to] 1500 mg/L(OR = 2.330, 95%CI = 1.008-5.386), eGFR &lt; 60ml/min/1.73m.sup.2(OR = 2.295, 95%CI = 1.016-5.187), Serum IgA/C3 ratio [greater than or equal to] 2.59 (OR = 2.505, 95%CI = 1.241-5.057), were independent risk factors for crescent formation. Incorporating these factors, our model achieved well-fitted calibration curves and a good C-index of 0.776 (95%CI [0.711-0.840]) in predicting crescent formation. Conclusions Our nomogram showed good calibration and was effective in predicting crescent formation risk in IgAN patients. Keywords: IgA nephropathy, Crescent, Prediction, Nomogram</description><subject>Analysis</subject><subject>Atrophy</subject><subject>Biopsy</subject><subject>Body mass index</subject><subject>Care and treatment</subject><subject>Crescent</subject><subject>Diagnosis</subject><subject>Erythrocytes</subject><subject>Histology, Pathological</subject><subject>IgA glomerulonephritis</subject><subject>IgA nephropathy</subject><subject>Immunoglobulin A</subject><subject>Kidney diseases</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Nephrology</subject><subject>Nomogram</subject><subject>Nomograms</subject><subject>Nomography (Mathematics)</subject><subject>Prediction</subject><subject>Predictions</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>Regression analysis</subject><subject>Risk factors</subject><subject>Variables</subject><issn>1471-2369</issn><issn>1471-2369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk2PFCEQ7RiNu47-AU8kXrz0SgENtBez2fgxyUYveyc0VM8wmW5a6Nlk_r30zEYdY0iAFK9eVT1eVb0FegOg5YcMTGtWU8ZryjnQmj2rrkEoqBmX7fO_7lfVq5x3lILSgr6srriSUjFQ15X_Hoe4SXYgfUxk3iKZEvrg5hBHEnviEmaH47w8D_YUDSNZb27JiNM2xcnO2yMpeyig_JFYknBOMU9YKB6R5Pngj6-rF73dZ3zzdK6qhy-fH-6-1fc_vq7vbu9r1wiY615RjraTzEvXaiq161qphes77BUo26tGClQoNFLpigTCetC-RSYbTRVfVeszrY92Z6YUBpuOJtpgToGYNsamObg9Gq96oNJDtygi26ZDgQy0A-Fb8FwXrk9nrunQDegXCZLdX5Bevoxhazbx0QAVC-XSzfsnhhR_HjDPZghFyv3ejhgP2TAtgVPG2qXYu3-gu3hIY5FqQTVcN6W3P6iNLROEsY-lsFtIza2SXACHgl1VN_9BleVxCC6O2IcSv0hg5wRXvi0n7H8PCdQsPjNnn5niM3PymWH8F4MHw0o</recordid><startdate>20230904</startdate><enddate>20230904</enddate><creator>Lin, Zaoqiang</creator><creator>Feng, Liuchang</creator><creator>Zeng, Huan</creator><creator>Lin, Xuefei</creator><creator>Lin, Qizhan</creator><creator>Lu, Fuhua</creator><creator>Wang, Lixin</creator><creator>Mai, Jianling</creator><creator>Fang, Pingjun</creator><creator>Liu, Xusheng</creator><creator>Tan, Qinxiang</creator><creator>Zou, Chuan</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230904</creationdate><title>Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study</title><author>Lin, Zaoqiang ; Feng, Liuchang ; Zeng, Huan ; Lin, Xuefei ; Lin, Qizhan ; Lu, Fuhua ; Wang, Lixin ; Mai, Jianling ; Fang, Pingjun ; Liu, Xusheng ; Tan, Qinxiang ; Zou, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Atrophy</topic><topic>Biopsy</topic><topic>Body mass index</topic><topic>Care and treatment</topic><topic>Crescent</topic><topic>Diagnosis</topic><topic>Erythrocytes</topic><topic>Histology, Pathological</topic><topic>IgA glomerulonephritis</topic><topic>IgA nephropathy</topic><topic>Immunoglobulin A</topic><topic>Kidney diseases</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Nephrology</topic><topic>Nomogram</topic><topic>Nomograms</topic><topic>Nomography (Mathematics)</topic><topic>Prediction</topic><topic>Predictions</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>Regression analysis</topic><topic>Risk factors</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zaoqiang</creatorcontrib><creatorcontrib>Feng, Liuchang</creatorcontrib><creatorcontrib>Zeng, Huan</creatorcontrib><creatorcontrib>Lin, Xuefei</creatorcontrib><creatorcontrib>Lin, Qizhan</creatorcontrib><creatorcontrib>Lu, Fuhua</creatorcontrib><creatorcontrib>Wang, Lixin</creatorcontrib><creatorcontrib>Mai, Jianling</creatorcontrib><creatorcontrib>Fang, Pingjun</creatorcontrib><creatorcontrib>Liu, Xusheng</creatorcontrib><creatorcontrib>Tan, Qinxiang</creatorcontrib><creatorcontrib>Zou, Chuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zaoqiang</au><au>Feng, Liuchang</au><au>Zeng, Huan</au><au>Lin, Xuefei</au><au>Lin, Qizhan</au><au>Lu, Fuhua</au><au>Wang, Lixin</au><au>Mai, Jianling</au><au>Fang, Pingjun</au><au>Liu, Xusheng</au><au>Tan, Qinxiang</au><au>Zou, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study</atitle><jtitle>BMC nephrology</jtitle><date>2023-09-04</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>1</spage><epage>262</epage><pages>1-262</pages><artnum>262</artnum><issn>1471-2369</issn><eissn>1471-2369</eissn><abstract>Background The 2017 Oxford classification of immunoglobulin A nephropathy (IgAN) recently reported that crescents could predict a worse renal outcome. Early prediction of crescent formation can help physicians determine the appropriate intervention, and thus, improve the outcomes. Therefore, we aimed to establish a nomogram model for the prediction of crescent formation in IgA nephropathy patients. Methods We retrospectively analyzed 200 cases of biopsy-proven IgAN patients. Least absolute shrinkage and selection operator(LASSO) regression and multivariate logistic regression was applied to screen for influencing factors of crescent formation in IgAN patients. The performance of the proposed nomogram was evaluated based on Harrell's concordance index (C-index), calibration plot, and decision curve analysis. Results Multivariate logistic analysis showed that urinary protein [greater than or equal to] 1 g (OR = 3.129, 95%CI = 1.454-6.732), urinary red blood cell (URBC) counts [greater than or equal to] 30/ul (OR = 3.190, 95%CI = 1.590-6.402), mALBU [greater than or equal to] 1500 mg/L(OR = 2.330, 95%CI = 1.008-5.386), eGFR &lt; 60ml/min/1.73m.sup.2(OR = 2.295, 95%CI = 1.016-5.187), Serum IgA/C3 ratio [greater than or equal to] 2.59 (OR = 2.505, 95%CI = 1.241-5.057), were independent risk factors for crescent formation. Incorporating these factors, our model achieved well-fitted calibration curves and a good C-index of 0.776 (95%CI [0.711-0.840]) in predicting crescent formation. Conclusions Our nomogram showed good calibration and was effective in predicting crescent formation risk in IgAN patients. Keywords: IgA nephropathy, Crescent, Prediction, Nomogram</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>37667217</pmid><doi>10.1186/s12882-023-03310-2</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2369
ispartof BMC nephrology, 2023-09, Vol.24 (1), p.1-262, Article 262
issn 1471-2369
1471-2369
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d7f106d1b1784695be4e218c14d91d38
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free
subjects Analysis
Atrophy
Biopsy
Body mass index
Care and treatment
Crescent
Diagnosis
Erythrocytes
Histology, Pathological
IgA glomerulonephritis
IgA nephropathy
Immunoglobulin A
Kidney diseases
Medical research
Medicine, Experimental
Nephrology
Nomogram
Nomograms
Nomography (Mathematics)
Prediction
Predictions
Prognosis
Proteins
Regression analysis
Risk factors
Variables
title Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nomogram%20for%20the%20prediction%20of%20crescent%20formation%20in%20IgA%20nephropathy%20patients:%20a%20retrospective%20study&rft.jtitle=BMC%20nephrology&rft.au=Lin,%20Zaoqiang&rft.date=2023-09-04&rft.volume=24&rft.issue=1&rft.spage=1&rft.epage=262&rft.pages=1-262&rft.artnum=262&rft.issn=1471-2369&rft.eissn=1471-2369&rft_id=info:doi/10.1186/s12882-023-03310-2&rft_dat=%3Cgale_doaj_%3EA763413165%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865385218&rft_id=info:pmid/37667217&rft_galeid=A763413165&rfr_iscdi=true