Loading…
Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study
Background The 2017 Oxford classification of immunoglobulin A nephropathy (IgAN) recently reported that crescents could predict a worse renal outcome. Early prediction of crescent formation can help physicians determine the appropriate intervention, and thus, improve the outcomes. Therefore, we aime...
Saved in:
Published in: | BMC nephrology 2023-09, Vol.24 (1), p.1-262, Article 262 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073 |
container_end_page | 262 |
container_issue | 1 |
container_start_page | 1 |
container_title | BMC nephrology |
container_volume | 24 |
creator | Lin, Zaoqiang Feng, Liuchang Zeng, Huan Lin, Xuefei Lin, Qizhan Lu, Fuhua Wang, Lixin Mai, Jianling Fang, Pingjun Liu, Xusheng Tan, Qinxiang Zou, Chuan |
description | Background The 2017 Oxford classification of immunoglobulin A nephropathy (IgAN) recently reported that crescents could predict a worse renal outcome. Early prediction of crescent formation can help physicians determine the appropriate intervention, and thus, improve the outcomes. Therefore, we aimed to establish a nomogram model for the prediction of crescent formation in IgA nephropathy patients. Methods We retrospectively analyzed 200 cases of biopsy-proven IgAN patients. Least absolute shrinkage and selection operator(LASSO) regression and multivariate logistic regression was applied to screen for influencing factors of crescent formation in IgAN patients. The performance of the proposed nomogram was evaluated based on Harrell's concordance index (C-index), calibration plot, and decision curve analysis. Results Multivariate logistic analysis showed that urinary protein [greater than or equal to] 1 g (OR = 3.129, 95%CI = 1.454-6.732), urinary red blood cell (URBC) counts [greater than or equal to] 30/ul (OR = 3.190, 95%CI = 1.590-6.402), mALBU [greater than or equal to] 1500 mg/L(OR = 2.330, 95%CI = 1.008-5.386), eGFR < 60ml/min/1.73m.sup.2(OR = 2.295, 95%CI = 1.016-5.187), Serum IgA/C3 ratio [greater than or equal to] 2.59 (OR = 2.505, 95%CI = 1.241-5.057), were independent risk factors for crescent formation. Incorporating these factors, our model achieved well-fitted calibration curves and a good C-index of 0.776 (95%CI [0.711-0.840]) in predicting crescent formation. Conclusions Our nomogram showed good calibration and was effective in predicting crescent formation risk in IgAN patients. Keywords: IgA nephropathy, Crescent, Prediction, Nomogram |
doi_str_mv | 10.1186/s12882-023-03310-2 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7f106d1b1784695be4e218c14d91d38</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A763413165</galeid><doaj_id>oai_doaj_org_article_d7f106d1b1784695be4e218c14d91d38</doaj_id><sourcerecordid>A763413165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073</originalsourceid><addsrcrecordid>eNptUk2PFCEQ7RiNu47-AU8kXrz0SgENtBez2fgxyUYveyc0VM8wmW5a6Nlk_r30zEYdY0iAFK9eVT1eVb0FegOg5YcMTGtWU8ZryjnQmj2rrkEoqBmX7fO_7lfVq5x3lILSgr6srriSUjFQ15X_Hoe4SXYgfUxk3iKZEvrg5hBHEnviEmaH47w8D_YUDSNZb27JiNM2xcnO2yMpeyig_JFYknBOMU9YKB6R5Pngj6-rF73dZ3zzdK6qhy-fH-6-1fc_vq7vbu9r1wiY615RjraTzEvXaiq161qphes77BUo26tGClQoNFLpigTCetC-RSYbTRVfVeszrY92Z6YUBpuOJtpgToGYNsamObg9Gq96oNJDtygi26ZDgQy0A-Fb8FwXrk9nrunQDegXCZLdX5Bevoxhazbx0QAVC-XSzfsnhhR_HjDPZghFyv3ejhgP2TAtgVPG2qXYu3-gu3hIY5FqQTVcN6W3P6iNLROEsY-lsFtIza2SXACHgl1VN_9BleVxCC6O2IcSv0hg5wRXvi0n7H8PCdQsPjNnn5niM3PymWH8F4MHw0o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865385218</pqid></control><display><type>article</type><title>Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Lin, Zaoqiang ; Feng, Liuchang ; Zeng, Huan ; Lin, Xuefei ; Lin, Qizhan ; Lu, Fuhua ; Wang, Lixin ; Mai, Jianling ; Fang, Pingjun ; Liu, Xusheng ; Tan, Qinxiang ; Zou, Chuan</creator><creatorcontrib>Lin, Zaoqiang ; Feng, Liuchang ; Zeng, Huan ; Lin, Xuefei ; Lin, Qizhan ; Lu, Fuhua ; Wang, Lixin ; Mai, Jianling ; Fang, Pingjun ; Liu, Xusheng ; Tan, Qinxiang ; Zou, Chuan</creatorcontrib><description>Background The 2017 Oxford classification of immunoglobulin A nephropathy (IgAN) recently reported that crescents could predict a worse renal outcome. Early prediction of crescent formation can help physicians determine the appropriate intervention, and thus, improve the outcomes. Therefore, we aimed to establish a nomogram model for the prediction of crescent formation in IgA nephropathy patients. Methods We retrospectively analyzed 200 cases of biopsy-proven IgAN patients. Least absolute shrinkage and selection operator(LASSO) regression and multivariate logistic regression was applied to screen for influencing factors of crescent formation in IgAN patients. The performance of the proposed nomogram was evaluated based on Harrell's concordance index (C-index), calibration plot, and decision curve analysis. Results Multivariate logistic analysis showed that urinary protein [greater than or equal to] 1 g (OR = 3.129, 95%CI = 1.454-6.732), urinary red blood cell (URBC) counts [greater than or equal to] 30/ul (OR = 3.190, 95%CI = 1.590-6.402), mALBU [greater than or equal to] 1500 mg/L(OR = 2.330, 95%CI = 1.008-5.386), eGFR < 60ml/min/1.73m.sup.2(OR = 2.295, 95%CI = 1.016-5.187), Serum IgA/C3 ratio [greater than or equal to] 2.59 (OR = 2.505, 95%CI = 1.241-5.057), were independent risk factors for crescent formation. Incorporating these factors, our model achieved well-fitted calibration curves and a good C-index of 0.776 (95%CI [0.711-0.840]) in predicting crescent formation. Conclusions Our nomogram showed good calibration and was effective in predicting crescent formation risk in IgAN patients. Keywords: IgA nephropathy, Crescent, Prediction, Nomogram</description><identifier>ISSN: 1471-2369</identifier><identifier>EISSN: 1471-2369</identifier><identifier>DOI: 10.1186/s12882-023-03310-2</identifier><identifier>PMID: 37667217</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Analysis ; Atrophy ; Biopsy ; Body mass index ; Care and treatment ; Crescent ; Diagnosis ; Erythrocytes ; Histology, Pathological ; IgA glomerulonephritis ; IgA nephropathy ; Immunoglobulin A ; Kidney diseases ; Medical research ; Medicine, Experimental ; Nephrology ; Nomogram ; Nomograms ; Nomography (Mathematics) ; Prediction ; Predictions ; Prognosis ; Proteins ; Regression analysis ; Risk factors ; Variables</subject><ispartof>BMC nephrology, 2023-09, Vol.24 (1), p.1-262, Article 262</ispartof><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>BioMed Central Ltd., part of Springer Nature 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073</citedby><cites>FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478467/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2865385218?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids></links><search><creatorcontrib>Lin, Zaoqiang</creatorcontrib><creatorcontrib>Feng, Liuchang</creatorcontrib><creatorcontrib>Zeng, Huan</creatorcontrib><creatorcontrib>Lin, Xuefei</creatorcontrib><creatorcontrib>Lin, Qizhan</creatorcontrib><creatorcontrib>Lu, Fuhua</creatorcontrib><creatorcontrib>Wang, Lixin</creatorcontrib><creatorcontrib>Mai, Jianling</creatorcontrib><creatorcontrib>Fang, Pingjun</creatorcontrib><creatorcontrib>Liu, Xusheng</creatorcontrib><creatorcontrib>Tan, Qinxiang</creatorcontrib><creatorcontrib>Zou, Chuan</creatorcontrib><title>Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study</title><title>BMC nephrology</title><description>Background The 2017 Oxford classification of immunoglobulin A nephropathy (IgAN) recently reported that crescents could predict a worse renal outcome. Early prediction of crescent formation can help physicians determine the appropriate intervention, and thus, improve the outcomes. Therefore, we aimed to establish a nomogram model for the prediction of crescent formation in IgA nephropathy patients. Methods We retrospectively analyzed 200 cases of biopsy-proven IgAN patients. Least absolute shrinkage and selection operator(LASSO) regression and multivariate logistic regression was applied to screen for influencing factors of crescent formation in IgAN patients. The performance of the proposed nomogram was evaluated based on Harrell's concordance index (C-index), calibration plot, and decision curve analysis. Results Multivariate logistic analysis showed that urinary protein [greater than or equal to] 1 g (OR = 3.129, 95%CI = 1.454-6.732), urinary red blood cell (URBC) counts [greater than or equal to] 30/ul (OR = 3.190, 95%CI = 1.590-6.402), mALBU [greater than or equal to] 1500 mg/L(OR = 2.330, 95%CI = 1.008-5.386), eGFR < 60ml/min/1.73m.sup.2(OR = 2.295, 95%CI = 1.016-5.187), Serum IgA/C3 ratio [greater than or equal to] 2.59 (OR = 2.505, 95%CI = 1.241-5.057), were independent risk factors for crescent formation. Incorporating these factors, our model achieved well-fitted calibration curves and a good C-index of 0.776 (95%CI [0.711-0.840]) in predicting crescent formation. Conclusions Our nomogram showed good calibration and was effective in predicting crescent formation risk in IgAN patients. Keywords: IgA nephropathy, Crescent, Prediction, Nomogram</description><subject>Analysis</subject><subject>Atrophy</subject><subject>Biopsy</subject><subject>Body mass index</subject><subject>Care and treatment</subject><subject>Crescent</subject><subject>Diagnosis</subject><subject>Erythrocytes</subject><subject>Histology, Pathological</subject><subject>IgA glomerulonephritis</subject><subject>IgA nephropathy</subject><subject>Immunoglobulin A</subject><subject>Kidney diseases</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Nephrology</subject><subject>Nomogram</subject><subject>Nomograms</subject><subject>Nomography (Mathematics)</subject><subject>Prediction</subject><subject>Predictions</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>Regression analysis</subject><subject>Risk factors</subject><subject>Variables</subject><issn>1471-2369</issn><issn>1471-2369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk2PFCEQ7RiNu47-AU8kXrz0SgENtBez2fgxyUYveyc0VM8wmW5a6Nlk_r30zEYdY0iAFK9eVT1eVb0FegOg5YcMTGtWU8ZryjnQmj2rrkEoqBmX7fO_7lfVq5x3lILSgr6srriSUjFQ15X_Hoe4SXYgfUxk3iKZEvrg5hBHEnviEmaH47w8D_YUDSNZb27JiNM2xcnO2yMpeyig_JFYknBOMU9YKB6R5Pngj6-rF73dZ3zzdK6qhy-fH-6-1fc_vq7vbu9r1wiY615RjraTzEvXaiq161qphes77BUo26tGClQoNFLpigTCetC-RSYbTRVfVeszrY92Z6YUBpuOJtpgToGYNsamObg9Gq96oNJDtygi26ZDgQy0A-Fb8FwXrk9nrunQDegXCZLdX5Bevoxhazbx0QAVC-XSzfsnhhR_HjDPZghFyv3ejhgP2TAtgVPG2qXYu3-gu3hIY5FqQTVcN6W3P6iNLROEsY-lsFtIza2SXACHgl1VN_9BleVxCC6O2IcSv0hg5wRXvi0n7H8PCdQsPjNnn5niM3PymWH8F4MHw0o</recordid><startdate>20230904</startdate><enddate>20230904</enddate><creator>Lin, Zaoqiang</creator><creator>Feng, Liuchang</creator><creator>Zeng, Huan</creator><creator>Lin, Xuefei</creator><creator>Lin, Qizhan</creator><creator>Lu, Fuhua</creator><creator>Wang, Lixin</creator><creator>Mai, Jianling</creator><creator>Fang, Pingjun</creator><creator>Liu, Xusheng</creator><creator>Tan, Qinxiang</creator><creator>Zou, Chuan</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230904</creationdate><title>Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study</title><author>Lin, Zaoqiang ; Feng, Liuchang ; Zeng, Huan ; Lin, Xuefei ; Lin, Qizhan ; Lu, Fuhua ; Wang, Lixin ; Mai, Jianling ; Fang, Pingjun ; Liu, Xusheng ; Tan, Qinxiang ; Zou, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Atrophy</topic><topic>Biopsy</topic><topic>Body mass index</topic><topic>Care and treatment</topic><topic>Crescent</topic><topic>Diagnosis</topic><topic>Erythrocytes</topic><topic>Histology, Pathological</topic><topic>IgA glomerulonephritis</topic><topic>IgA nephropathy</topic><topic>Immunoglobulin A</topic><topic>Kidney diseases</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Nephrology</topic><topic>Nomogram</topic><topic>Nomograms</topic><topic>Nomography (Mathematics)</topic><topic>Prediction</topic><topic>Predictions</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>Regression analysis</topic><topic>Risk factors</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zaoqiang</creatorcontrib><creatorcontrib>Feng, Liuchang</creatorcontrib><creatorcontrib>Zeng, Huan</creatorcontrib><creatorcontrib>Lin, Xuefei</creatorcontrib><creatorcontrib>Lin, Qizhan</creatorcontrib><creatorcontrib>Lu, Fuhua</creatorcontrib><creatorcontrib>Wang, Lixin</creatorcontrib><creatorcontrib>Mai, Jianling</creatorcontrib><creatorcontrib>Fang, Pingjun</creatorcontrib><creatorcontrib>Liu, Xusheng</creatorcontrib><creatorcontrib>Tan, Qinxiang</creatorcontrib><creatorcontrib>Zou, Chuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zaoqiang</au><au>Feng, Liuchang</au><au>Zeng, Huan</au><au>Lin, Xuefei</au><au>Lin, Qizhan</au><au>Lu, Fuhua</au><au>Wang, Lixin</au><au>Mai, Jianling</au><au>Fang, Pingjun</au><au>Liu, Xusheng</au><au>Tan, Qinxiang</au><au>Zou, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study</atitle><jtitle>BMC nephrology</jtitle><date>2023-09-04</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>1</spage><epage>262</epage><pages>1-262</pages><artnum>262</artnum><issn>1471-2369</issn><eissn>1471-2369</eissn><abstract>Background The 2017 Oxford classification of immunoglobulin A nephropathy (IgAN) recently reported that crescents could predict a worse renal outcome. Early prediction of crescent formation can help physicians determine the appropriate intervention, and thus, improve the outcomes. Therefore, we aimed to establish a nomogram model for the prediction of crescent formation in IgA nephropathy patients. Methods We retrospectively analyzed 200 cases of biopsy-proven IgAN patients. Least absolute shrinkage and selection operator(LASSO) regression and multivariate logistic regression was applied to screen for influencing factors of crescent formation in IgAN patients. The performance of the proposed nomogram was evaluated based on Harrell's concordance index (C-index), calibration plot, and decision curve analysis. Results Multivariate logistic analysis showed that urinary protein [greater than or equal to] 1 g (OR = 3.129, 95%CI = 1.454-6.732), urinary red blood cell (URBC) counts [greater than or equal to] 30/ul (OR = 3.190, 95%CI = 1.590-6.402), mALBU [greater than or equal to] 1500 mg/L(OR = 2.330, 95%CI = 1.008-5.386), eGFR < 60ml/min/1.73m.sup.2(OR = 2.295, 95%CI = 1.016-5.187), Serum IgA/C3 ratio [greater than or equal to] 2.59 (OR = 2.505, 95%CI = 1.241-5.057), were independent risk factors for crescent formation. Incorporating these factors, our model achieved well-fitted calibration curves and a good C-index of 0.776 (95%CI [0.711-0.840]) in predicting crescent formation. Conclusions Our nomogram showed good calibration and was effective in predicting crescent formation risk in IgAN patients. Keywords: IgA nephropathy, Crescent, Prediction, Nomogram</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>37667217</pmid><doi>10.1186/s12882-023-03310-2</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2369 |
ispartof | BMC nephrology, 2023-09, Vol.24 (1), p.1-262, Article 262 |
issn | 1471-2369 1471-2369 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d7f106d1b1784695be4e218c14d91d38 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free |
subjects | Analysis Atrophy Biopsy Body mass index Care and treatment Crescent Diagnosis Erythrocytes Histology, Pathological IgA glomerulonephritis IgA nephropathy Immunoglobulin A Kidney diseases Medical research Medicine, Experimental Nephrology Nomogram Nomograms Nomography (Mathematics) Prediction Predictions Prognosis Proteins Regression analysis Risk factors Variables |
title | Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nomogram%20for%20the%20prediction%20of%20crescent%20formation%20in%20IgA%20nephropathy%20patients:%20a%20retrospective%20study&rft.jtitle=BMC%20nephrology&rft.au=Lin,%20Zaoqiang&rft.date=2023-09-04&rft.volume=24&rft.issue=1&rft.spage=1&rft.epage=262&rft.pages=1-262&rft.artnum=262&rft.issn=1471-2369&rft.eissn=1471-2369&rft_id=info:doi/10.1186/s12882-023-03310-2&rft_dat=%3Cgale_doaj_%3EA763413165%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-f703eab62d6c98068cb9684cfbef717af7564e7e48e06c1184ad18d9e2658073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865385218&rft_id=info:pmid/37667217&rft_galeid=A763413165&rfr_iscdi=true |