Loading…
Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting
We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking both large-scale utilization and clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related...
Saved in:
Published in: | NPJ digital medicine 2022-08, Vol.5 (1), p.120-120, Article 120 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3 |
container_end_page | 120 |
container_issue | 1 |
container_start_page | 120 |
container_title | NPJ digital medicine |
container_volume | 5 |
creator | Wismüller, Axel DSouza, Adora M. Abidin, Anas Z. Ali Vosoughi, M. Gange, Christopher Cortopassi, Isabel O. Bozovic, Gracijela Bankier, Alexander A. Batra, Kiran Chodakiewitz, Yosef Xi, Yin Whitlow, Christopher T. Ponnatapura, Janardhana Wendt, Gary J. Weinberg, Eric P. Stockmaster, Larry Shrier, David A. Shin, Min Chul Modi, Roshan Lo, Hao Steven Kligerman, Seth Hamid, Aws Hahn, Lewis D. Garcia, Glenn M. Chung, Jonathan H. Altes, Talissa Abbara, Suhny Bader, Anna S. |
description | We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking
both
large-scale utilization
and
clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related observational quantities over time. To quantitatively investigate its clinical applicability, we performed a retrospective multi-institutional study encompassing 13 healthcare systems throughout the United States before and after the 2020 COVID-19 pandemic. Using repurposed software infrastructure of a commercial AI-based image analysis service, we harvested data on medical imaging service requests and radiology reports for 40,037 computed tomography pulmonary angiograms (CTPA) to evaluate for pulmonary embolism (PE). Specifically, we compared two 70-day observational periods, namely (i) a pre-pandemic control period from 11/25/2019 through 2/2/2020, and (ii) a period during the early COVID-19 pandemic from 3/8/2020 through 5/16/2020. Natural language processing (NLP) on final radiology reports served as the ground truth for identifying positive PE cases, where we found an NLP accuracy of 98% for classifying radiology reports as positive or negative for PE based on a manual review of 2,400 radiology reports. Fewer CTPA exams were performed during the early COVID-19 pandemic than during the pre-pandemic period (9806 vs. 12,106). However, the PE positivity rate was significantly higher (11.6 vs. 9.9%,
p
|
doi_str_mv | 10.1038/s41746-022-00653-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7f681c2f5e449f48e1a91279ad68a22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7f681c2f5e449f48e1a91279ad68a22</doaj_id><sourcerecordid>2704129984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhkuKvOPYFCS2FrlSpF-BqzSaT1KvEXuxkq_57vJtSWg5cbGvm9eOZ8VsUbxm9YFToj0myWqqScl5SqipR8hfFKRdGl0pU_OWT80lxntKWUsqp1Eaq18WJqIxWtDKnxXwJcbgv0wQ9ktXNz_WXkhmyA9_i6BoSNgnjHiYXfCLBk908jMFDvCc4bsLg0kjm5HxP_FFz51ok4zxMrnQ-TW6aD1EYSAsTkFuIe8xR378pXnUwJDx_2M-KH18vv6-uyuubb-vV5-uyqSSdSk4FVbJBxlAKnVfTsFrlxoUwUiOV2FBGKwFQc-SIhmqjgCnV1XLD1UacFeuF2wbY2l10Yy7dBnD2GAixtxAn1wxo27pTmjW8q1BK02U8A8N4baBVGjjPrE8LazdvRmwb9FOE4Rn0eca7W9uHvTVCa6NpBnx4AMTwa86DsKNLDQ4DeAxzsrzO_6NqKWWWvv9Hug1zzINcVIwbow8qvqiaGFKK2D0Ww6g9mMQuJrHZJPZoEnto493TNh6v_LFEFohFkHLK9xj_vv0f7G8uD8gB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704129984</pqid></control><display><type>article</type><title>Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wismüller, Axel ; DSouza, Adora M. ; Abidin, Anas Z. ; Ali Vosoughi, M. ; Gange, Christopher ; Cortopassi, Isabel O. ; Bozovic, Gracijela ; Bankier, Alexander A. ; Batra, Kiran ; Chodakiewitz, Yosef ; Xi, Yin ; Whitlow, Christopher T. ; Ponnatapura, Janardhana ; Wendt, Gary J. ; Weinberg, Eric P. ; Stockmaster, Larry ; Shrier, David A. ; Shin, Min Chul ; Modi, Roshan ; Lo, Hao Steven ; Kligerman, Seth ; Hamid, Aws ; Hahn, Lewis D. ; Garcia, Glenn M. ; Chung, Jonathan H. ; Altes, Talissa ; Abbara, Suhny ; Bader, Anna S.</creator><creatorcontrib>Wismüller, Axel ; DSouza, Adora M. ; Abidin, Anas Z. ; Ali Vosoughi, M. ; Gange, Christopher ; Cortopassi, Isabel O. ; Bozovic, Gracijela ; Bankier, Alexander A. ; Batra, Kiran ; Chodakiewitz, Yosef ; Xi, Yin ; Whitlow, Christopher T. ; Ponnatapura, Janardhana ; Wendt, Gary J. ; Weinberg, Eric P. ; Stockmaster, Larry ; Shrier, David A. ; Shin, Min Chul ; Modi, Roshan ; Lo, Hao Steven ; Kligerman, Seth ; Hamid, Aws ; Hahn, Lewis D. ; Garcia, Glenn M. ; Chung, Jonathan H. ; Altes, Talissa ; Abbara, Suhny ; Bader, Anna S.</creatorcontrib><description>We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking
both
large-scale utilization
and
clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related observational quantities over time. To quantitatively investigate its clinical applicability, we performed a retrospective multi-institutional study encompassing 13 healthcare systems throughout the United States before and after the 2020 COVID-19 pandemic. Using repurposed software infrastructure of a commercial AI-based image analysis service, we harvested data on medical imaging service requests and radiology reports for 40,037 computed tomography pulmonary angiograms (CTPA) to evaluate for pulmonary embolism (PE). Specifically, we compared two 70-day observational periods, namely (i) a pre-pandemic control period from 11/25/2019 through 2/2/2020, and (ii) a period during the early COVID-19 pandemic from 3/8/2020 through 5/16/2020. Natural language processing (NLP) on final radiology reports served as the ground truth for identifying positive PE cases, where we found an NLP accuracy of 98% for classifying radiology reports as positive or negative for PE based on a manual review of 2,400 radiology reports. Fewer CTPA exams were performed during the early COVID-19 pandemic than during the pre-pandemic period (9806 vs. 12,106). However, the PE positivity rate was significantly higher (11.6 vs. 9.9%,
p
< 10
−4
) with an excess of 92 PE cases during the early COVID-19 outbreak, i.e., ~1.3 daily PE cases more than statistically expected. Our results suggest that MIDH can contribute value as an exploratory tool, aiming at a better understanding of pandemic-related effects on healthcare.</description><identifier>ISSN: 2398-6352</identifier><identifier>EISSN: 2398-6352</identifier><identifier>DOI: 10.1038/s41746-022-00653-2</identifier><identifier>PMID: 35986059</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/699/255/2514 ; 692/700/139 ; Biomedicine ; Biotechnology ; Coronaviruses ; COVID-19 ; Digital technology ; Medical imaging ; Medicine ; Medicine & Public Health ; Pandemics ; Pulmonary embolisms</subject><ispartof>NPJ digital medicine, 2022-08, Vol.5 (1), p.120-120, Article 120</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3</citedby><cites>FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3</cites><orcidid>0000-0002-3596-0787 ; 0000-0003-2552-7362 ; 0000-0002-3807-0261 ; 0000-0002-7459-0854 ; 0000-0002-1224-4665 ; 0000-0002-0029-8906 ; 0000-0002-2790-8946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388980/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2704129984?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,38493,43871,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35986059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wismüller, Axel</creatorcontrib><creatorcontrib>DSouza, Adora M.</creatorcontrib><creatorcontrib>Abidin, Anas Z.</creatorcontrib><creatorcontrib>Ali Vosoughi, M.</creatorcontrib><creatorcontrib>Gange, Christopher</creatorcontrib><creatorcontrib>Cortopassi, Isabel O.</creatorcontrib><creatorcontrib>Bozovic, Gracijela</creatorcontrib><creatorcontrib>Bankier, Alexander A.</creatorcontrib><creatorcontrib>Batra, Kiran</creatorcontrib><creatorcontrib>Chodakiewitz, Yosef</creatorcontrib><creatorcontrib>Xi, Yin</creatorcontrib><creatorcontrib>Whitlow, Christopher T.</creatorcontrib><creatorcontrib>Ponnatapura, Janardhana</creatorcontrib><creatorcontrib>Wendt, Gary J.</creatorcontrib><creatorcontrib>Weinberg, Eric P.</creatorcontrib><creatorcontrib>Stockmaster, Larry</creatorcontrib><creatorcontrib>Shrier, David A.</creatorcontrib><creatorcontrib>Shin, Min Chul</creatorcontrib><creatorcontrib>Modi, Roshan</creatorcontrib><creatorcontrib>Lo, Hao Steven</creatorcontrib><creatorcontrib>Kligerman, Seth</creatorcontrib><creatorcontrib>Hamid, Aws</creatorcontrib><creatorcontrib>Hahn, Lewis D.</creatorcontrib><creatorcontrib>Garcia, Glenn M.</creatorcontrib><creatorcontrib>Chung, Jonathan H.</creatorcontrib><creatorcontrib>Altes, Talissa</creatorcontrib><creatorcontrib>Abbara, Suhny</creatorcontrib><creatorcontrib>Bader, Anna S.</creatorcontrib><title>Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting</title><title>NPJ digital medicine</title><addtitle>npj Digit. Med</addtitle><addtitle>NPJ Digit Med</addtitle><description>We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking
both
large-scale utilization
and
clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related observational quantities over time. To quantitatively investigate its clinical applicability, we performed a retrospective multi-institutional study encompassing 13 healthcare systems throughout the United States before and after the 2020 COVID-19 pandemic. Using repurposed software infrastructure of a commercial AI-based image analysis service, we harvested data on medical imaging service requests and radiology reports for 40,037 computed tomography pulmonary angiograms (CTPA) to evaluate for pulmonary embolism (PE). Specifically, we compared two 70-day observational periods, namely (i) a pre-pandemic control period from 11/25/2019 through 2/2/2020, and (ii) a period during the early COVID-19 pandemic from 3/8/2020 through 5/16/2020. Natural language processing (NLP) on final radiology reports served as the ground truth for identifying positive PE cases, where we found an NLP accuracy of 98% for classifying radiology reports as positive or negative for PE based on a manual review of 2,400 radiology reports. Fewer CTPA exams were performed during the early COVID-19 pandemic than during the pre-pandemic period (9806 vs. 12,106). However, the PE positivity rate was significantly higher (11.6 vs. 9.9%,
p
< 10
−4
) with an excess of 92 PE cases during the early COVID-19 outbreak, i.e., ~1.3 daily PE cases more than statistically expected. Our results suggest that MIDH can contribute value as an exploratory tool, aiming at a better understanding of pandemic-related effects on healthcare.</description><subject>692/699/255/2514</subject><subject>692/700/139</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Digital technology</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Pandemics</subject><subject>Pulmonary embolisms</subject><issn>2398-6352</issn><issn>2398-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhkuKvOPYFCS2FrlSpF-BqzSaT1KvEXuxkq_57vJtSWg5cbGvm9eOZ8VsUbxm9YFToj0myWqqScl5SqipR8hfFKRdGl0pU_OWT80lxntKWUsqp1Eaq18WJqIxWtDKnxXwJcbgv0wQ9ktXNz_WXkhmyA9_i6BoSNgnjHiYXfCLBk908jMFDvCc4bsLg0kjm5HxP_FFz51ok4zxMrnQ-TW6aD1EYSAsTkFuIe8xR378pXnUwJDx_2M-KH18vv6-uyuubb-vV5-uyqSSdSk4FVbJBxlAKnVfTsFrlxoUwUiOV2FBGKwFQc-SIhmqjgCnV1XLD1UacFeuF2wbY2l10Yy7dBnD2GAixtxAn1wxo27pTmjW8q1BK02U8A8N4baBVGjjPrE8LazdvRmwb9FOE4Rn0eca7W9uHvTVCa6NpBnx4AMTwa86DsKNLDQ4DeAxzsrzO_6NqKWWWvv9Hug1zzINcVIwbow8qvqiaGFKK2D0Ww6g9mMQuJrHZJPZoEnto493TNh6v_LFEFohFkHLK9xj_vv0f7G8uD8gB</recordid><startdate>20220819</startdate><enddate>20220819</enddate><creator>Wismüller, Axel</creator><creator>DSouza, Adora M.</creator><creator>Abidin, Anas Z.</creator><creator>Ali Vosoughi, M.</creator><creator>Gange, Christopher</creator><creator>Cortopassi, Isabel O.</creator><creator>Bozovic, Gracijela</creator><creator>Bankier, Alexander A.</creator><creator>Batra, Kiran</creator><creator>Chodakiewitz, Yosef</creator><creator>Xi, Yin</creator><creator>Whitlow, Christopher T.</creator><creator>Ponnatapura, Janardhana</creator><creator>Wendt, Gary J.</creator><creator>Weinberg, Eric P.</creator><creator>Stockmaster, Larry</creator><creator>Shrier, David A.</creator><creator>Shin, Min Chul</creator><creator>Modi, Roshan</creator><creator>Lo, Hao Steven</creator><creator>Kligerman, Seth</creator><creator>Hamid, Aws</creator><creator>Hahn, Lewis D.</creator><creator>Garcia, Glenn M.</creator><creator>Chung, Jonathan H.</creator><creator>Altes, Talissa</creator><creator>Abbara, Suhny</creator><creator>Bader, Anna S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3596-0787</orcidid><orcidid>https://orcid.org/0000-0003-2552-7362</orcidid><orcidid>https://orcid.org/0000-0002-3807-0261</orcidid><orcidid>https://orcid.org/0000-0002-7459-0854</orcidid><orcidid>https://orcid.org/0000-0002-1224-4665</orcidid><orcidid>https://orcid.org/0000-0002-0029-8906</orcidid><orcidid>https://orcid.org/0000-0002-2790-8946</orcidid></search><sort><creationdate>20220819</creationdate><title>Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting</title><author>Wismüller, Axel ; DSouza, Adora M. ; Abidin, Anas Z. ; Ali Vosoughi, M. ; Gange, Christopher ; Cortopassi, Isabel O. ; Bozovic, Gracijela ; Bankier, Alexander A. ; Batra, Kiran ; Chodakiewitz, Yosef ; Xi, Yin ; Whitlow, Christopher T. ; Ponnatapura, Janardhana ; Wendt, Gary J. ; Weinberg, Eric P. ; Stockmaster, Larry ; Shrier, David A. ; Shin, Min Chul ; Modi, Roshan ; Lo, Hao Steven ; Kligerman, Seth ; Hamid, Aws ; Hahn, Lewis D. ; Garcia, Glenn M. ; Chung, Jonathan H. ; Altes, Talissa ; Abbara, Suhny ; Bader, Anna S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>692/699/255/2514</topic><topic>692/700/139</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Digital technology</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Pandemics</topic><topic>Pulmonary embolisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wismüller, Axel</creatorcontrib><creatorcontrib>DSouza, Adora M.</creatorcontrib><creatorcontrib>Abidin, Anas Z.</creatorcontrib><creatorcontrib>Ali Vosoughi, M.</creatorcontrib><creatorcontrib>Gange, Christopher</creatorcontrib><creatorcontrib>Cortopassi, Isabel O.</creatorcontrib><creatorcontrib>Bozovic, Gracijela</creatorcontrib><creatorcontrib>Bankier, Alexander A.</creatorcontrib><creatorcontrib>Batra, Kiran</creatorcontrib><creatorcontrib>Chodakiewitz, Yosef</creatorcontrib><creatorcontrib>Xi, Yin</creatorcontrib><creatorcontrib>Whitlow, Christopher T.</creatorcontrib><creatorcontrib>Ponnatapura, Janardhana</creatorcontrib><creatorcontrib>Wendt, Gary J.</creatorcontrib><creatorcontrib>Weinberg, Eric P.</creatorcontrib><creatorcontrib>Stockmaster, Larry</creatorcontrib><creatorcontrib>Shrier, David A.</creatorcontrib><creatorcontrib>Shin, Min Chul</creatorcontrib><creatorcontrib>Modi, Roshan</creatorcontrib><creatorcontrib>Lo, Hao Steven</creatorcontrib><creatorcontrib>Kligerman, Seth</creatorcontrib><creatorcontrib>Hamid, Aws</creatorcontrib><creatorcontrib>Hahn, Lewis D.</creatorcontrib><creatorcontrib>Garcia, Glenn M.</creatorcontrib><creatorcontrib>Chung, Jonathan H.</creatorcontrib><creatorcontrib>Altes, Talissa</creatorcontrib><creatorcontrib>Abbara, Suhny</creatorcontrib><creatorcontrib>Bader, Anna S.</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NPJ digital medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wismüller, Axel</au><au>DSouza, Adora M.</au><au>Abidin, Anas Z.</au><au>Ali Vosoughi, M.</au><au>Gange, Christopher</au><au>Cortopassi, Isabel O.</au><au>Bozovic, Gracijela</au><au>Bankier, Alexander A.</au><au>Batra, Kiran</au><au>Chodakiewitz, Yosef</au><au>Xi, Yin</au><au>Whitlow, Christopher T.</au><au>Ponnatapura, Janardhana</au><au>Wendt, Gary J.</au><au>Weinberg, Eric P.</au><au>Stockmaster, Larry</au><au>Shrier, David A.</au><au>Shin, Min Chul</au><au>Modi, Roshan</au><au>Lo, Hao Steven</au><au>Kligerman, Seth</au><au>Hamid, Aws</au><au>Hahn, Lewis D.</au><au>Garcia, Glenn M.</au><au>Chung, Jonathan H.</au><au>Altes, Talissa</au><au>Abbara, Suhny</au><au>Bader, Anna S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting</atitle><jtitle>NPJ digital medicine</jtitle><stitle>npj Digit. Med</stitle><addtitle>NPJ Digit Med</addtitle><date>2022-08-19</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>120</spage><epage>120</epage><pages>120-120</pages><artnum>120</artnum><issn>2398-6352</issn><eissn>2398-6352</eissn><abstract>We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking
both
large-scale utilization
and
clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related observational quantities over time. To quantitatively investigate its clinical applicability, we performed a retrospective multi-institutional study encompassing 13 healthcare systems throughout the United States before and after the 2020 COVID-19 pandemic. Using repurposed software infrastructure of a commercial AI-based image analysis service, we harvested data on medical imaging service requests and radiology reports for 40,037 computed tomography pulmonary angiograms (CTPA) to evaluate for pulmonary embolism (PE). Specifically, we compared two 70-day observational periods, namely (i) a pre-pandemic control period from 11/25/2019 through 2/2/2020, and (ii) a period during the early COVID-19 pandemic from 3/8/2020 through 5/16/2020. Natural language processing (NLP) on final radiology reports served as the ground truth for identifying positive PE cases, where we found an NLP accuracy of 98% for classifying radiology reports as positive or negative for PE based on a manual review of 2,400 radiology reports. Fewer CTPA exams were performed during the early COVID-19 pandemic than during the pre-pandemic period (9806 vs. 12,106). However, the PE positivity rate was significantly higher (11.6 vs. 9.9%,
p
< 10
−4
) with an excess of 92 PE cases during the early COVID-19 outbreak, i.e., ~1.3 daily PE cases more than statistically expected. Our results suggest that MIDH can contribute value as an exploratory tool, aiming at a better understanding of pandemic-related effects on healthcare.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35986059</pmid><doi>10.1038/s41746-022-00653-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3596-0787</orcidid><orcidid>https://orcid.org/0000-0003-2552-7362</orcidid><orcidid>https://orcid.org/0000-0002-3807-0261</orcidid><orcidid>https://orcid.org/0000-0002-7459-0854</orcidid><orcidid>https://orcid.org/0000-0002-1224-4665</orcidid><orcidid>https://orcid.org/0000-0002-0029-8906</orcidid><orcidid>https://orcid.org/0000-0002-2790-8946</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2398-6352 |
ispartof | NPJ digital medicine, 2022-08, Vol.5 (1), p.120-120, Article 120 |
issn | 2398-6352 2398-6352 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d7f681c2f5e449f48e1a91279ad68a22 |
source | Publicly Available Content Database; PubMed Central; Alma/SFX Local Collection; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 692/699/255/2514 692/700/139 Biomedicine Biotechnology Coronaviruses COVID-19 Digital technology Medical imaging Medicine Medicine & Public Health Pandemics Pulmonary embolisms |
title | Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early-stage%20COVID-19%20pandemic%20observations%20on%20pulmonary%20embolism%20using%20nationwide%20multi-institutional%20data%20harvesting&rft.jtitle=NPJ%20digital%20medicine&rft.au=Wism%C3%BCller,%20Axel&rft.date=2022-08-19&rft.volume=5&rft.issue=1&rft.spage=120&rft.epage=120&rft.pages=120-120&rft.artnum=120&rft.issn=2398-6352&rft.eissn=2398-6352&rft_id=info:doi/10.1038/s41746-022-00653-2&rft_dat=%3Cproquest_doaj_%3E2704129984%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704129984&rft_id=info:pmid/35986059&rfr_iscdi=true |