Loading…

Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting

We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking both large-scale utilization and clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related...

Full description

Saved in:
Bibliographic Details
Published in:NPJ digital medicine 2022-08, Vol.5 (1), p.120-120, Article 120
Main Authors: Wismüller, Axel, DSouza, Adora M., Abidin, Anas Z., Ali Vosoughi, M., Gange, Christopher, Cortopassi, Isabel O., Bozovic, Gracijela, Bankier, Alexander A., Batra, Kiran, Chodakiewitz, Yosef, Xi, Yin, Whitlow, Christopher T., Ponnatapura, Janardhana, Wendt, Gary J., Weinberg, Eric P., Stockmaster, Larry, Shrier, David A., Shin, Min Chul, Modi, Roshan, Lo, Hao Steven, Kligerman, Seth, Hamid, Aws, Hahn, Lewis D., Garcia, Glenn M., Chung, Jonathan H., Altes, Talissa, Abbara, Suhny, Bader, Anna S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3
cites cdi_FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3
container_end_page 120
container_issue 1
container_start_page 120
container_title NPJ digital medicine
container_volume 5
creator Wismüller, Axel
DSouza, Adora M.
Abidin, Anas Z.
Ali Vosoughi, M.
Gange, Christopher
Cortopassi, Isabel O.
Bozovic, Gracijela
Bankier, Alexander A.
Batra, Kiran
Chodakiewitz, Yosef
Xi, Yin
Whitlow, Christopher T.
Ponnatapura, Janardhana
Wendt, Gary J.
Weinberg, Eric P.
Stockmaster, Larry
Shrier, David A.
Shin, Min Chul
Modi, Roshan
Lo, Hao Steven
Kligerman, Seth
Hamid, Aws
Hahn, Lewis D.
Garcia, Glenn M.
Chung, Jonathan H.
Altes, Talissa
Abbara, Suhny
Bader, Anna S.
description We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking both large-scale utilization and clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related observational quantities over time. To quantitatively investigate its clinical applicability, we performed a retrospective multi-institutional study encompassing 13 healthcare systems throughout the United States before and after the 2020 COVID-19 pandemic. Using repurposed software infrastructure of a commercial AI-based image analysis service, we harvested data on medical imaging service requests and radiology reports for 40,037 computed tomography pulmonary angiograms (CTPA) to evaluate for pulmonary embolism (PE). Specifically, we compared two 70-day observational periods, namely (i) a pre-pandemic control period from 11/25/2019 through 2/2/2020, and (ii) a period during the early COVID-19 pandemic from 3/8/2020 through 5/16/2020. Natural language processing (NLP) on final radiology reports served as the ground truth for identifying positive PE cases, where we found an NLP accuracy of 98% for classifying radiology reports as positive or negative for PE based on a manual review of 2,400 radiology reports. Fewer CTPA exams were performed during the early COVID-19 pandemic than during the pre-pandemic period (9806 vs. 12,106). However, the PE positivity rate was significantly higher (11.6 vs. 9.9%, p  
doi_str_mv 10.1038/s41746-022-00653-2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7f681c2f5e449f48e1a91279ad68a22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7f681c2f5e449f48e1a91279ad68a22</doaj_id><sourcerecordid>2704129984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhkuKvOPYFCS2FrlSpF-BqzSaT1KvEXuxkq_57vJtSWg5cbGvm9eOZ8VsUbxm9YFToj0myWqqScl5SqipR8hfFKRdGl0pU_OWT80lxntKWUsqp1Eaq18WJqIxWtDKnxXwJcbgv0wQ9ktXNz_WXkhmyA9_i6BoSNgnjHiYXfCLBk908jMFDvCc4bsLg0kjm5HxP_FFz51ok4zxMrnQ-TW6aD1EYSAsTkFuIe8xR378pXnUwJDx_2M-KH18vv6-uyuubb-vV5-uyqSSdSk4FVbJBxlAKnVfTsFrlxoUwUiOV2FBGKwFQc-SIhmqjgCnV1XLD1UacFeuF2wbY2l10Yy7dBnD2GAixtxAn1wxo27pTmjW8q1BK02U8A8N4baBVGjjPrE8LazdvRmwb9FOE4Rn0eca7W9uHvTVCa6NpBnx4AMTwa86DsKNLDQ4DeAxzsrzO_6NqKWWWvv9Hug1zzINcVIwbow8qvqiaGFKK2D0Ww6g9mMQuJrHZJPZoEnto493TNh6v_LFEFohFkHLK9xj_vv0f7G8uD8gB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704129984</pqid></control><display><type>article</type><title>Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wismüller, Axel ; DSouza, Adora M. ; Abidin, Anas Z. ; Ali Vosoughi, M. ; Gange, Christopher ; Cortopassi, Isabel O. ; Bozovic, Gracijela ; Bankier, Alexander A. ; Batra, Kiran ; Chodakiewitz, Yosef ; Xi, Yin ; Whitlow, Christopher T. ; Ponnatapura, Janardhana ; Wendt, Gary J. ; Weinberg, Eric P. ; Stockmaster, Larry ; Shrier, David A. ; Shin, Min Chul ; Modi, Roshan ; Lo, Hao Steven ; Kligerman, Seth ; Hamid, Aws ; Hahn, Lewis D. ; Garcia, Glenn M. ; Chung, Jonathan H. ; Altes, Talissa ; Abbara, Suhny ; Bader, Anna S.</creator><creatorcontrib>Wismüller, Axel ; DSouza, Adora M. ; Abidin, Anas Z. ; Ali Vosoughi, M. ; Gange, Christopher ; Cortopassi, Isabel O. ; Bozovic, Gracijela ; Bankier, Alexander A. ; Batra, Kiran ; Chodakiewitz, Yosef ; Xi, Yin ; Whitlow, Christopher T. ; Ponnatapura, Janardhana ; Wendt, Gary J. ; Weinberg, Eric P. ; Stockmaster, Larry ; Shrier, David A. ; Shin, Min Chul ; Modi, Roshan ; Lo, Hao Steven ; Kligerman, Seth ; Hamid, Aws ; Hahn, Lewis D. ; Garcia, Glenn M. ; Chung, Jonathan H. ; Altes, Talissa ; Abbara, Suhny ; Bader, Anna S.</creatorcontrib><description>We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking both large-scale utilization and clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related observational quantities over time. To quantitatively investigate its clinical applicability, we performed a retrospective multi-institutional study encompassing 13 healthcare systems throughout the United States before and after the 2020 COVID-19 pandemic. Using repurposed software infrastructure of a commercial AI-based image analysis service, we harvested data on medical imaging service requests and radiology reports for 40,037 computed tomography pulmonary angiograms (CTPA) to evaluate for pulmonary embolism (PE). Specifically, we compared two 70-day observational periods, namely (i) a pre-pandemic control period from 11/25/2019 through 2/2/2020, and (ii) a period during the early COVID-19 pandemic from 3/8/2020 through 5/16/2020. Natural language processing (NLP) on final radiology reports served as the ground truth for identifying positive PE cases, where we found an NLP accuracy of 98% for classifying radiology reports as positive or negative for PE based on a manual review of 2,400 radiology reports. Fewer CTPA exams were performed during the early COVID-19 pandemic than during the pre-pandemic period (9806 vs. 12,106). However, the PE positivity rate was significantly higher (11.6 vs. 9.9%, p  &lt; 10 −4 ) with an excess of 92 PE cases during the early COVID-19 outbreak, i.e., ~1.3 daily PE cases more than statistically expected. Our results suggest that MIDH can contribute value as an exploratory tool, aiming at a better understanding of pandemic-related effects on healthcare.</description><identifier>ISSN: 2398-6352</identifier><identifier>EISSN: 2398-6352</identifier><identifier>DOI: 10.1038/s41746-022-00653-2</identifier><identifier>PMID: 35986059</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/699/255/2514 ; 692/700/139 ; Biomedicine ; Biotechnology ; Coronaviruses ; COVID-19 ; Digital technology ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Pandemics ; Pulmonary embolisms</subject><ispartof>NPJ digital medicine, 2022-08, Vol.5 (1), p.120-120, Article 120</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3</citedby><cites>FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3</cites><orcidid>0000-0002-3596-0787 ; 0000-0003-2552-7362 ; 0000-0002-3807-0261 ; 0000-0002-7459-0854 ; 0000-0002-1224-4665 ; 0000-0002-0029-8906 ; 0000-0002-2790-8946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388980/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2704129984?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,38493,43871,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35986059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wismüller, Axel</creatorcontrib><creatorcontrib>DSouza, Adora M.</creatorcontrib><creatorcontrib>Abidin, Anas Z.</creatorcontrib><creatorcontrib>Ali Vosoughi, M.</creatorcontrib><creatorcontrib>Gange, Christopher</creatorcontrib><creatorcontrib>Cortopassi, Isabel O.</creatorcontrib><creatorcontrib>Bozovic, Gracijela</creatorcontrib><creatorcontrib>Bankier, Alexander A.</creatorcontrib><creatorcontrib>Batra, Kiran</creatorcontrib><creatorcontrib>Chodakiewitz, Yosef</creatorcontrib><creatorcontrib>Xi, Yin</creatorcontrib><creatorcontrib>Whitlow, Christopher T.</creatorcontrib><creatorcontrib>Ponnatapura, Janardhana</creatorcontrib><creatorcontrib>Wendt, Gary J.</creatorcontrib><creatorcontrib>Weinberg, Eric P.</creatorcontrib><creatorcontrib>Stockmaster, Larry</creatorcontrib><creatorcontrib>Shrier, David A.</creatorcontrib><creatorcontrib>Shin, Min Chul</creatorcontrib><creatorcontrib>Modi, Roshan</creatorcontrib><creatorcontrib>Lo, Hao Steven</creatorcontrib><creatorcontrib>Kligerman, Seth</creatorcontrib><creatorcontrib>Hamid, Aws</creatorcontrib><creatorcontrib>Hahn, Lewis D.</creatorcontrib><creatorcontrib>Garcia, Glenn M.</creatorcontrib><creatorcontrib>Chung, Jonathan H.</creatorcontrib><creatorcontrib>Altes, Talissa</creatorcontrib><creatorcontrib>Abbara, Suhny</creatorcontrib><creatorcontrib>Bader, Anna S.</creatorcontrib><title>Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting</title><title>NPJ digital medicine</title><addtitle>npj Digit. Med</addtitle><addtitle>NPJ Digit Med</addtitle><description>We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking both large-scale utilization and clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related observational quantities over time. To quantitatively investigate its clinical applicability, we performed a retrospective multi-institutional study encompassing 13 healthcare systems throughout the United States before and after the 2020 COVID-19 pandemic. Using repurposed software infrastructure of a commercial AI-based image analysis service, we harvested data on medical imaging service requests and radiology reports for 40,037 computed tomography pulmonary angiograms (CTPA) to evaluate for pulmonary embolism (PE). Specifically, we compared two 70-day observational periods, namely (i) a pre-pandemic control period from 11/25/2019 through 2/2/2020, and (ii) a period during the early COVID-19 pandemic from 3/8/2020 through 5/16/2020. Natural language processing (NLP) on final radiology reports served as the ground truth for identifying positive PE cases, where we found an NLP accuracy of 98% for classifying radiology reports as positive or negative for PE based on a manual review of 2,400 radiology reports. Fewer CTPA exams were performed during the early COVID-19 pandemic than during the pre-pandemic period (9806 vs. 12,106). However, the PE positivity rate was significantly higher (11.6 vs. 9.9%, p  &lt; 10 −4 ) with an excess of 92 PE cases during the early COVID-19 outbreak, i.e., ~1.3 daily PE cases more than statistically expected. Our results suggest that MIDH can contribute value as an exploratory tool, aiming at a better understanding of pandemic-related effects on healthcare.</description><subject>692/699/255/2514</subject><subject>692/700/139</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Digital technology</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Pandemics</subject><subject>Pulmonary embolisms</subject><issn>2398-6352</issn><issn>2398-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhkuKvOPYFCS2FrlSpF-BqzSaT1KvEXuxkq_57vJtSWg5cbGvm9eOZ8VsUbxm9YFToj0myWqqScl5SqipR8hfFKRdGl0pU_OWT80lxntKWUsqp1Eaq18WJqIxWtDKnxXwJcbgv0wQ9ktXNz_WXkhmyA9_i6BoSNgnjHiYXfCLBk908jMFDvCc4bsLg0kjm5HxP_FFz51ok4zxMrnQ-TW6aD1EYSAsTkFuIe8xR378pXnUwJDx_2M-KH18vv6-uyuubb-vV5-uyqSSdSk4FVbJBxlAKnVfTsFrlxoUwUiOV2FBGKwFQc-SIhmqjgCnV1XLD1UacFeuF2wbY2l10Yy7dBnD2GAixtxAn1wxo27pTmjW8q1BK02U8A8N4baBVGjjPrE8LazdvRmwb9FOE4Rn0eca7W9uHvTVCa6NpBnx4AMTwa86DsKNLDQ4DeAxzsrzO_6NqKWWWvv9Hug1zzINcVIwbow8qvqiaGFKK2D0Ww6g9mMQuJrHZJPZoEnto493TNh6v_LFEFohFkHLK9xj_vv0f7G8uD8gB</recordid><startdate>20220819</startdate><enddate>20220819</enddate><creator>Wismüller, Axel</creator><creator>DSouza, Adora M.</creator><creator>Abidin, Anas Z.</creator><creator>Ali Vosoughi, M.</creator><creator>Gange, Christopher</creator><creator>Cortopassi, Isabel O.</creator><creator>Bozovic, Gracijela</creator><creator>Bankier, Alexander A.</creator><creator>Batra, Kiran</creator><creator>Chodakiewitz, Yosef</creator><creator>Xi, Yin</creator><creator>Whitlow, Christopher T.</creator><creator>Ponnatapura, Janardhana</creator><creator>Wendt, Gary J.</creator><creator>Weinberg, Eric P.</creator><creator>Stockmaster, Larry</creator><creator>Shrier, David A.</creator><creator>Shin, Min Chul</creator><creator>Modi, Roshan</creator><creator>Lo, Hao Steven</creator><creator>Kligerman, Seth</creator><creator>Hamid, Aws</creator><creator>Hahn, Lewis D.</creator><creator>Garcia, Glenn M.</creator><creator>Chung, Jonathan H.</creator><creator>Altes, Talissa</creator><creator>Abbara, Suhny</creator><creator>Bader, Anna S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3596-0787</orcidid><orcidid>https://orcid.org/0000-0003-2552-7362</orcidid><orcidid>https://orcid.org/0000-0002-3807-0261</orcidid><orcidid>https://orcid.org/0000-0002-7459-0854</orcidid><orcidid>https://orcid.org/0000-0002-1224-4665</orcidid><orcidid>https://orcid.org/0000-0002-0029-8906</orcidid><orcidid>https://orcid.org/0000-0002-2790-8946</orcidid></search><sort><creationdate>20220819</creationdate><title>Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting</title><author>Wismüller, Axel ; DSouza, Adora M. ; Abidin, Anas Z. ; Ali Vosoughi, M. ; Gange, Christopher ; Cortopassi, Isabel O. ; Bozovic, Gracijela ; Bankier, Alexander A. ; Batra, Kiran ; Chodakiewitz, Yosef ; Xi, Yin ; Whitlow, Christopher T. ; Ponnatapura, Janardhana ; Wendt, Gary J. ; Weinberg, Eric P. ; Stockmaster, Larry ; Shrier, David A. ; Shin, Min Chul ; Modi, Roshan ; Lo, Hao Steven ; Kligerman, Seth ; Hamid, Aws ; Hahn, Lewis D. ; Garcia, Glenn M. ; Chung, Jonathan H. ; Altes, Talissa ; Abbara, Suhny ; Bader, Anna S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>692/699/255/2514</topic><topic>692/700/139</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Digital technology</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Pandemics</topic><topic>Pulmonary embolisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wismüller, Axel</creatorcontrib><creatorcontrib>DSouza, Adora M.</creatorcontrib><creatorcontrib>Abidin, Anas Z.</creatorcontrib><creatorcontrib>Ali Vosoughi, M.</creatorcontrib><creatorcontrib>Gange, Christopher</creatorcontrib><creatorcontrib>Cortopassi, Isabel O.</creatorcontrib><creatorcontrib>Bozovic, Gracijela</creatorcontrib><creatorcontrib>Bankier, Alexander A.</creatorcontrib><creatorcontrib>Batra, Kiran</creatorcontrib><creatorcontrib>Chodakiewitz, Yosef</creatorcontrib><creatorcontrib>Xi, Yin</creatorcontrib><creatorcontrib>Whitlow, Christopher T.</creatorcontrib><creatorcontrib>Ponnatapura, Janardhana</creatorcontrib><creatorcontrib>Wendt, Gary J.</creatorcontrib><creatorcontrib>Weinberg, Eric P.</creatorcontrib><creatorcontrib>Stockmaster, Larry</creatorcontrib><creatorcontrib>Shrier, David A.</creatorcontrib><creatorcontrib>Shin, Min Chul</creatorcontrib><creatorcontrib>Modi, Roshan</creatorcontrib><creatorcontrib>Lo, Hao Steven</creatorcontrib><creatorcontrib>Kligerman, Seth</creatorcontrib><creatorcontrib>Hamid, Aws</creatorcontrib><creatorcontrib>Hahn, Lewis D.</creatorcontrib><creatorcontrib>Garcia, Glenn M.</creatorcontrib><creatorcontrib>Chung, Jonathan H.</creatorcontrib><creatorcontrib>Altes, Talissa</creatorcontrib><creatorcontrib>Abbara, Suhny</creatorcontrib><creatorcontrib>Bader, Anna S.</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NPJ digital medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wismüller, Axel</au><au>DSouza, Adora M.</au><au>Abidin, Anas Z.</au><au>Ali Vosoughi, M.</au><au>Gange, Christopher</au><au>Cortopassi, Isabel O.</au><au>Bozovic, Gracijela</au><au>Bankier, Alexander A.</au><au>Batra, Kiran</au><au>Chodakiewitz, Yosef</au><au>Xi, Yin</au><au>Whitlow, Christopher T.</au><au>Ponnatapura, Janardhana</au><au>Wendt, Gary J.</au><au>Weinberg, Eric P.</au><au>Stockmaster, Larry</au><au>Shrier, David A.</au><au>Shin, Min Chul</au><au>Modi, Roshan</au><au>Lo, Hao Steven</au><au>Kligerman, Seth</au><au>Hamid, Aws</au><au>Hahn, Lewis D.</au><au>Garcia, Glenn M.</au><au>Chung, Jonathan H.</au><au>Altes, Talissa</au><au>Abbara, Suhny</au><au>Bader, Anna S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting</atitle><jtitle>NPJ digital medicine</jtitle><stitle>npj Digit. Med</stitle><addtitle>NPJ Digit Med</addtitle><date>2022-08-19</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>120</spage><epage>120</epage><pages>120-120</pages><artnum>120</artnum><issn>2398-6352</issn><eissn>2398-6352</eissn><abstract>We introduce a multi-institutional data harvesting (MIDH) method for longitudinal observation of medical imaging utilization and reporting. By tracking both large-scale utilization and clinical imaging results data, the MIDH approach is targeted at measuring surrogates for important disease-related observational quantities over time. To quantitatively investigate its clinical applicability, we performed a retrospective multi-institutional study encompassing 13 healthcare systems throughout the United States before and after the 2020 COVID-19 pandemic. Using repurposed software infrastructure of a commercial AI-based image analysis service, we harvested data on medical imaging service requests and radiology reports for 40,037 computed tomography pulmonary angiograms (CTPA) to evaluate for pulmonary embolism (PE). Specifically, we compared two 70-day observational periods, namely (i) a pre-pandemic control period from 11/25/2019 through 2/2/2020, and (ii) a period during the early COVID-19 pandemic from 3/8/2020 through 5/16/2020. Natural language processing (NLP) on final radiology reports served as the ground truth for identifying positive PE cases, where we found an NLP accuracy of 98% for classifying radiology reports as positive or negative for PE based on a manual review of 2,400 radiology reports. Fewer CTPA exams were performed during the early COVID-19 pandemic than during the pre-pandemic period (9806 vs. 12,106). However, the PE positivity rate was significantly higher (11.6 vs. 9.9%, p  &lt; 10 −4 ) with an excess of 92 PE cases during the early COVID-19 outbreak, i.e., ~1.3 daily PE cases more than statistically expected. Our results suggest that MIDH can contribute value as an exploratory tool, aiming at a better understanding of pandemic-related effects on healthcare.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35986059</pmid><doi>10.1038/s41746-022-00653-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3596-0787</orcidid><orcidid>https://orcid.org/0000-0003-2552-7362</orcidid><orcidid>https://orcid.org/0000-0002-3807-0261</orcidid><orcidid>https://orcid.org/0000-0002-7459-0854</orcidid><orcidid>https://orcid.org/0000-0002-1224-4665</orcidid><orcidid>https://orcid.org/0000-0002-0029-8906</orcidid><orcidid>https://orcid.org/0000-0002-2790-8946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2398-6352
ispartof NPJ digital medicine, 2022-08, Vol.5 (1), p.120-120, Article 120
issn 2398-6352
2398-6352
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d7f681c2f5e449f48e1a91279ad68a22
source Publicly Available Content Database; PubMed Central; Alma/SFX Local Collection; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 692/699/255/2514
692/700/139
Biomedicine
Biotechnology
Coronaviruses
COVID-19
Digital technology
Medical imaging
Medicine
Medicine & Public Health
Pandemics
Pulmonary embolisms
title Early-stage COVID-19 pandemic observations on pulmonary embolism using nationwide multi-institutional data harvesting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early-stage%20COVID-19%20pandemic%20observations%20on%20pulmonary%20embolism%20using%20nationwide%20multi-institutional%20data%20harvesting&rft.jtitle=NPJ%20digital%20medicine&rft.au=Wism%C3%BCller,%20Axel&rft.date=2022-08-19&rft.volume=5&rft.issue=1&rft.spage=120&rft.epage=120&rft.pages=120-120&rft.artnum=120&rft.issn=2398-6352&rft.eissn=2398-6352&rft_id=info:doi/10.1038/s41746-022-00653-2&rft_dat=%3Cproquest_doaj_%3E2704129984%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-203064ce11e43811e9c17641733948e04ec01053aa72e2ee90896a166f74b26b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704129984&rft_id=info:pmid/35986059&rfr_iscdi=true