Loading…

Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals

Petal color is one of the key characteristics determining the attractiveness and therefore the commercial value of an ornamental crop. Here, we present the first genome-wide association study for the important ornamental crop rose, focusing on the anthocyanin and carotenoid contents in petals of 96...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science 2016-12, Vol.7, p.1798-1798
Main Authors: Schulz, Dietmar F, Schott, Rena T, Voorrips, Roeland E, Smulders, Marinus J M, Linde, Marcus, Debener, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c576t-ca9b2097ae7ca5748e4b225724c40bcd194c782a36f1ba0fc4787ba31eadf6c13
cites cdi_FETCH-LOGICAL-c576t-ca9b2097ae7ca5748e4b225724c40bcd194c782a36f1ba0fc4787ba31eadf6c13
container_end_page 1798
container_issue
container_start_page 1798
container_title Frontiers in plant science
container_volume 7
creator Schulz, Dietmar F
Schott, Rena T
Voorrips, Roeland E
Smulders, Marinus J M
Linde, Marcus
Debener, Thomas
description Petal color is one of the key characteristics determining the attractiveness and therefore the commercial value of an ornamental crop. Here, we present the first genome-wide association study for the important ornamental crop rose, focusing on the anthocyanin and carotenoid contents in petals of 96 diverse tetraploid garden rose genotypes. Cultivated roses display a vast phenotypic and genetic diversity and are therefore ideal targets for association genetics. For marker analysis, we used a recently designed Axiom SNP chip comprising 68,000 SNPs with additionally 281 SSRs, 400 AFLPs and 246 markers from candidate genes. An analysis of the structure of the rose population revealed three subpopulations with most of the genetic variation between individual genotypes rather than between clusters and with a high average proportion of heterozygous loci. The mapping of markers significantly associated with anthocyanin and carotenoid content to the related and genomes revealed clusters of associated markers indicating five genomic regions associated with the total anthocyanin content and two large clusters associated with the carotenoid content. Among the marker clusters associated with the phenotypes, we found several candidate genes with known functions in either the anthocyanin or the carotenoid biosynthesis pathways. Among others, we identified a glutathione-S-transferase, 4CL, an auxin response factor and F3'H as candidate genes affecting anthocyanin concentration, and CCD4 and Zeaxanthine epoxidase as candidates affecting the concentration of carotenoids. These markers are starting points for future validation experiments in independent populations as well as for functional genomic studies to identify the causal factors for the observed color phenotypes. Furthermore, validated markers may be interesting tools for marker-assisted selection in commercial breeding programmes in that they provide the tools to identify superior parental combinations that combine several associated markers in higher dosages.
doi_str_mv 10.3389/fpls.2016.01798
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7f75601ee7f41228ce711ef30f09b57</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7f75601ee7f41228ce711ef30f09b57</doaj_id><sourcerecordid>1851301641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-ca9b2097ae7ca5748e4b225724c40bcd194c782a36f1ba0fc4787ba31eadf6c13</originalsourceid><addsrcrecordid>eNpVUsFq3DAQNaUlCWnOuRUfe_FGkmXL6qGwLGkaCCSUhpRexFge7Sp4pa2kbdi_r7ybhkQHzTAz72lm9IrinJJZXXfywmzGOGOEtjNChezeFSe0bXnFW_br_Sv_uDiL8ZHk0xAipTgqjpmQUjZCnhS_r9D5NVYPdsByHqPXFpL1rpw7GHfRxtKbMq1yzqWV1ztw1pXghnIBwaeMtdn1LntpX_rDRyzvMMEYPxYfTDZ49mxPi_tvlz8X36ub26vrxfym0o1oU6VB9oxIASg0NIJ3yHvGGsG45qTXA5Vci45B3RraAzGai070UFOEwbSa1qfF9YF38PCoNsGuIeyUB6v2AR-WCkKyekQ1CCOallBEYThlrNMoKEVTE0Nk34jM9eXA9QRLzKPmSzkI2sY94Wj7MJE_bYNy42Q22z6qhuY91xn89QDOwTUOOu8kwPimo7cZZ1dq6f9mfN0x2maCz88Ewf_ZYkxqbaPGcQSHfhsV7XJl_m8-DX1xKNXBxxjQvDxDiZrUoSZ1qEkdaq-OjPj0uruX-v9aqP8BNIq5VQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851301641</pqid></control><display><type>article</type><title>Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals</title><source>PubMed Central</source><creator>Schulz, Dietmar F ; Schott, Rena T ; Voorrips, Roeland E ; Smulders, Marinus J M ; Linde, Marcus ; Debener, Thomas</creator><creatorcontrib>Schulz, Dietmar F ; Schott, Rena T ; Voorrips, Roeland E ; Smulders, Marinus J M ; Linde, Marcus ; Debener, Thomas</creatorcontrib><description>Petal color is one of the key characteristics determining the attractiveness and therefore the commercial value of an ornamental crop. Here, we present the first genome-wide association study for the important ornamental crop rose, focusing on the anthocyanin and carotenoid contents in petals of 96 diverse tetraploid garden rose genotypes. Cultivated roses display a vast phenotypic and genetic diversity and are therefore ideal targets for association genetics. For marker analysis, we used a recently designed Axiom SNP chip comprising 68,000 SNPs with additionally 281 SSRs, 400 AFLPs and 246 markers from candidate genes. An analysis of the structure of the rose population revealed three subpopulations with most of the genetic variation between individual genotypes rather than between clusters and with a high average proportion of heterozygous loci. The mapping of markers significantly associated with anthocyanin and carotenoid content to the related and genomes revealed clusters of associated markers indicating five genomic regions associated with the total anthocyanin content and two large clusters associated with the carotenoid content. Among the marker clusters associated with the phenotypes, we found several candidate genes with known functions in either the anthocyanin or the carotenoid biosynthesis pathways. Among others, we identified a glutathione-S-transferase, 4CL, an auxin response factor and F3'H as candidate genes affecting anthocyanin concentration, and CCD4 and Zeaxanthine epoxidase as candidates affecting the concentration of carotenoids. These markers are starting points for future validation experiments in independent populations as well as for functional genomic studies to identify the causal factors for the observed color phenotypes. Furthermore, validated markers may be interesting tools for marker-assisted selection in commercial breeding programmes in that they provide the tools to identify superior parental combinations that combine several associated markers in higher dosages.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2016.01798</identifier><identifier>PMID: 27999579</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Anthocyanin ; Carotenoid ; Genome wide association study ; Petal color ; Petal colour ; Plant Science ; Tetraploid roses</subject><ispartof>Frontiers in plant science, 2016-12, Vol.7, p.1798-1798</ispartof><rights>Copyright © 2016 Schulz, Schott, Voorrips, Smulders, Linde and Debener. 2016 Schulz, Schott, Voorrips, Smulders, Linde and Debener</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-ca9b2097ae7ca5748e4b225724c40bcd194c782a36f1ba0fc4787ba31eadf6c13</citedby><cites>FETCH-LOGICAL-c576t-ca9b2097ae7ca5748e4b225724c40bcd194c782a36f1ba0fc4787ba31eadf6c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138216/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138216/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27999579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schulz, Dietmar F</creatorcontrib><creatorcontrib>Schott, Rena T</creatorcontrib><creatorcontrib>Voorrips, Roeland E</creatorcontrib><creatorcontrib>Smulders, Marinus J M</creatorcontrib><creatorcontrib>Linde, Marcus</creatorcontrib><creatorcontrib>Debener, Thomas</creatorcontrib><title>Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals</title><title>Frontiers in plant science</title><addtitle>Front Plant Sci</addtitle><description>Petal color is one of the key characteristics determining the attractiveness and therefore the commercial value of an ornamental crop. Here, we present the first genome-wide association study for the important ornamental crop rose, focusing on the anthocyanin and carotenoid contents in petals of 96 diverse tetraploid garden rose genotypes. Cultivated roses display a vast phenotypic and genetic diversity and are therefore ideal targets for association genetics. For marker analysis, we used a recently designed Axiom SNP chip comprising 68,000 SNPs with additionally 281 SSRs, 400 AFLPs and 246 markers from candidate genes. An analysis of the structure of the rose population revealed three subpopulations with most of the genetic variation between individual genotypes rather than between clusters and with a high average proportion of heterozygous loci. The mapping of markers significantly associated with anthocyanin and carotenoid content to the related and genomes revealed clusters of associated markers indicating five genomic regions associated with the total anthocyanin content and two large clusters associated with the carotenoid content. Among the marker clusters associated with the phenotypes, we found several candidate genes with known functions in either the anthocyanin or the carotenoid biosynthesis pathways. Among others, we identified a glutathione-S-transferase, 4CL, an auxin response factor and F3'H as candidate genes affecting anthocyanin concentration, and CCD4 and Zeaxanthine epoxidase as candidates affecting the concentration of carotenoids. These markers are starting points for future validation experiments in independent populations as well as for functional genomic studies to identify the causal factors for the observed color phenotypes. Furthermore, validated markers may be interesting tools for marker-assisted selection in commercial breeding programmes in that they provide the tools to identify superior parental combinations that combine several associated markers in higher dosages.</description><subject>Anthocyanin</subject><subject>Carotenoid</subject><subject>Genome wide association study</subject><subject>Petal color</subject><subject>Petal colour</subject><subject>Plant Science</subject><subject>Tetraploid roses</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUsFq3DAQNaUlCWnOuRUfe_FGkmXL6qGwLGkaCCSUhpRexFge7Sp4pa2kbdi_r7ybhkQHzTAz72lm9IrinJJZXXfywmzGOGOEtjNChezeFSe0bXnFW_br_Sv_uDiL8ZHk0xAipTgqjpmQUjZCnhS_r9D5NVYPdsByHqPXFpL1rpw7GHfRxtKbMq1yzqWV1ztw1pXghnIBwaeMtdn1LntpX_rDRyzvMMEYPxYfTDZ49mxPi_tvlz8X36ub26vrxfym0o1oU6VB9oxIASg0NIJ3yHvGGsG45qTXA5Vci45B3RraAzGai070UFOEwbSa1qfF9YF38PCoNsGuIeyUB6v2AR-WCkKyekQ1CCOallBEYThlrNMoKEVTE0Nk34jM9eXA9QRLzKPmSzkI2sY94Wj7MJE_bYNy42Q22z6qhuY91xn89QDOwTUOOu8kwPimo7cZZ1dq6f9mfN0x2maCz88Ewf_ZYkxqbaPGcQSHfhsV7XJl_m8-DX1xKNXBxxjQvDxDiZrUoSZ1qEkdaq-OjPj0uruX-v9aqP8BNIq5VQ</recordid><startdate>20161206</startdate><enddate>20161206</enddate><creator>Schulz, Dietmar F</creator><creator>Schott, Rena T</creator><creator>Voorrips, Roeland E</creator><creator>Smulders, Marinus J M</creator><creator>Linde, Marcus</creator><creator>Debener, Thomas</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope></search><sort><creationdate>20161206</creationdate><title>Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals</title><author>Schulz, Dietmar F ; Schott, Rena T ; Voorrips, Roeland E ; Smulders, Marinus J M ; Linde, Marcus ; Debener, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-ca9b2097ae7ca5748e4b225724c40bcd194c782a36f1ba0fc4787ba31eadf6c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anthocyanin</topic><topic>Carotenoid</topic><topic>Genome wide association study</topic><topic>Petal color</topic><topic>Petal colour</topic><topic>Plant Science</topic><topic>Tetraploid roses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulz, Dietmar F</creatorcontrib><creatorcontrib>Schott, Rena T</creatorcontrib><creatorcontrib>Voorrips, Roeland E</creatorcontrib><creatorcontrib>Smulders, Marinus J M</creatorcontrib><creatorcontrib>Linde, Marcus</creatorcontrib><creatorcontrib>Debener, Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulz, Dietmar F</au><au>Schott, Rena T</au><au>Voorrips, Roeland E</au><au>Smulders, Marinus J M</au><au>Linde, Marcus</au><au>Debener, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals</atitle><jtitle>Frontiers in plant science</jtitle><addtitle>Front Plant Sci</addtitle><date>2016-12-06</date><risdate>2016</risdate><volume>7</volume><spage>1798</spage><epage>1798</epage><pages>1798-1798</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>Petal color is one of the key characteristics determining the attractiveness and therefore the commercial value of an ornamental crop. Here, we present the first genome-wide association study for the important ornamental crop rose, focusing on the anthocyanin and carotenoid contents in petals of 96 diverse tetraploid garden rose genotypes. Cultivated roses display a vast phenotypic and genetic diversity and are therefore ideal targets for association genetics. For marker analysis, we used a recently designed Axiom SNP chip comprising 68,000 SNPs with additionally 281 SSRs, 400 AFLPs and 246 markers from candidate genes. An analysis of the structure of the rose population revealed three subpopulations with most of the genetic variation between individual genotypes rather than between clusters and with a high average proportion of heterozygous loci. The mapping of markers significantly associated with anthocyanin and carotenoid content to the related and genomes revealed clusters of associated markers indicating five genomic regions associated with the total anthocyanin content and two large clusters associated with the carotenoid content. Among the marker clusters associated with the phenotypes, we found several candidate genes with known functions in either the anthocyanin or the carotenoid biosynthesis pathways. Among others, we identified a glutathione-S-transferase, 4CL, an auxin response factor and F3'H as candidate genes affecting anthocyanin concentration, and CCD4 and Zeaxanthine epoxidase as candidates affecting the concentration of carotenoids. These markers are starting points for future validation experiments in independent populations as well as for functional genomic studies to identify the causal factors for the observed color phenotypes. Furthermore, validated markers may be interesting tools for marker-assisted selection in commercial breeding programmes in that they provide the tools to identify superior parental combinations that combine several associated markers in higher dosages.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>27999579</pmid><doi>10.3389/fpls.2016.01798</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-462X
ispartof Frontiers in plant science, 2016-12, Vol.7, p.1798-1798
issn 1664-462X
1664-462X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d7f75601ee7f41228ce711ef30f09b57
source PubMed Central
subjects Anthocyanin
Carotenoid
Genome wide association study
Petal color
Petal colour
Plant Science
Tetraploid roses
title Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Association%20Analysis%20of%20the%20Anthocyanin%20and%20Carotenoid%20Contents%20of%20Rose%20Petals&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Schulz,%20Dietmar%20F&rft.date=2016-12-06&rft.volume=7&rft.spage=1798&rft.epage=1798&rft.pages=1798-1798&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2016.01798&rft_dat=%3Cproquest_doaj_%3E1851301641%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c576t-ca9b2097ae7ca5748e4b225724c40bcd194c782a36f1ba0fc4787ba31eadf6c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1851301641&rft_id=info:pmid/27999579&rfr_iscdi=true