Loading…
General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler
In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2015-06, Vol.17 (6), p.3787-3805 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3 |
container_end_page | 3805 |
container_issue | 6 |
container_start_page | 3787 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 17 |
creator | Flores-Niño, Cuautli Olivares-Robles, Miguel Loboda, Igor |
description | In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE) properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series. |
doi_str_mv | 10.3390/e17063787 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d83462c95b924d189ab461878e473b91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d83462c95b924d189ab461878e473b91</doaj_id><sourcerecordid>1718926529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3</originalsourceid><addsrcrecordid>eNpdUVtLwzAULqLgnD74DwK-6MM0lzZNfBv1CgMfnM8hSU9cR7vUpEX890YnQ_Z0Dt-Nc8myc4KvGZP4BkiJOStFeZBNCJZyljOMD__1x9lJjGuMKaOET7LxETYQdIvmfR-8tivkfECV73ofmwHQcgWh89CCHUJj0etXHKCL6LMZVlsuWSs_9m2zeb_9QVClIyDvkEZ3YyL3AirvWwin2ZHTbYSzvzrN3h7ul9XTbPHy-FzNFzPLJBlmlOJaWFIbIijRdS41cUamLQQTtXO6sMY4w2hhbA5FbTEXjIOz0vASW-7YNHve5tZer1Ufmk6HL-V1o34BH96VDkNjW1C1YDmnVhZG0rwmQmqTcyJKAXnJjCQp63Kble70MUIcVNdEC22rN-DHqEiZTJQXVCbpxZ507cewSZsqwmUhBS4YTqqrrcoGH2MAtxuQYPXzTLV7JvsGKkuQxg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695980530</pqid></control><display><type>article</type><title>General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Flores-Niño, Cuautli ; Olivares-Robles, Miguel ; Loboda, Igor</creator><creatorcontrib>Flores-Niño, Cuautli ; Olivares-Robles, Miguel ; Loboda, Igor</creatorcontrib><description>In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE) properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e17063787</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>coefficient of performance ; Coefficients ; Coolers ; cooling capacity ; Equivalence ; Heat transfer ; Mathematical analysis ; Thermal conductivity ; thermal coupling ; thermoelectric cooler, Peltier effect ; Thermoelectricity ; Transmission electron microscopy</subject><ispartof>Entropy (Basel, Switzerland), 2015-06, Vol.17 (6), p.3787-3805</ispartof><rights>Copyright MDPI AG 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3</citedby><cites>FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3</cites><orcidid>0000-0003-2886-0347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1695980530/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1695980530?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,75096</link.rule.ids></links><search><creatorcontrib>Flores-Niño, Cuautli</creatorcontrib><creatorcontrib>Olivares-Robles, Miguel</creatorcontrib><creatorcontrib>Loboda, Igor</creatorcontrib><title>General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler</title><title>Entropy (Basel, Switzerland)</title><description>In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE) properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.</description><subject>coefficient of performance</subject><subject>Coefficients</subject><subject>Coolers</subject><subject>cooling capacity</subject><subject>Equivalence</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Thermal conductivity</subject><subject>thermal coupling</subject><subject>thermoelectric cooler, Peltier effect</subject><subject>Thermoelectricity</subject><subject>Transmission electron microscopy</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUVtLwzAULqLgnD74DwK-6MM0lzZNfBv1CgMfnM8hSU9cR7vUpEX890YnQ_Z0Dt-Nc8myc4KvGZP4BkiJOStFeZBNCJZyljOMD__1x9lJjGuMKaOET7LxETYQdIvmfR-8tivkfECV73ofmwHQcgWh89CCHUJj0etXHKCL6LMZVlsuWSs_9m2zeb_9QVClIyDvkEZ3YyL3AirvWwin2ZHTbYSzvzrN3h7ul9XTbPHy-FzNFzPLJBlmlOJaWFIbIijRdS41cUamLQQTtXO6sMY4w2hhbA5FbTEXjIOz0vASW-7YNHve5tZer1Ufmk6HL-V1o34BH96VDkNjW1C1YDmnVhZG0rwmQmqTcyJKAXnJjCQp63Kble70MUIcVNdEC22rN-DHqEiZTJQXVCbpxZ507cewSZsqwmUhBS4YTqqrrcoGH2MAtxuQYPXzTLV7JvsGKkuQxg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Flores-Niño, Cuautli</creator><creator>Olivares-Robles, Miguel</creator><creator>Loboda, Igor</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>JG9</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2886-0347</orcidid></search><sort><creationdate>20150601</creationdate><title>General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler</title><author>Flores-Niño, Cuautli ; Olivares-Robles, Miguel ; Loboda, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>coefficient of performance</topic><topic>Coefficients</topic><topic>Coolers</topic><topic>cooling capacity</topic><topic>Equivalence</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Thermal conductivity</topic><topic>thermal coupling</topic><topic>thermoelectric cooler, Peltier effect</topic><topic>Thermoelectricity</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores-Niño, Cuautli</creatorcontrib><creatorcontrib>Olivares-Robles, Miguel</creatorcontrib><creatorcontrib>Loboda, Igor</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores-Niño, Cuautli</au><au>Olivares-Robles, Miguel</au><au>Loboda, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>17</volume><issue>6</issue><spage>3787</spage><epage>3805</epage><pages>3787-3805</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE) properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/e17063787</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2886-0347</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2015-06, Vol.17 (6), p.3787-3805 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d83462c95b924d189ab461878e473b91 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | coefficient of performance Coefficients Coolers cooling capacity Equivalence Heat transfer Mathematical analysis Thermal conductivity thermal coupling thermoelectric cooler, Peltier effect Thermoelectricity Transmission electron microscopy |
title | General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Approach%20for%20Composite%20Thermoelectric%20Systems%20with%20Thermal%20Coupling:%20The%20Case%20of%20a%20Dual%20Thermoelectric%20Cooler&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Flores-Ni%C3%B1o,%20Cuautli&rft.date=2015-06-01&rft.volume=17&rft.issue=6&rft.spage=3787&rft.epage=3805&rft.pages=3787-3805&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e17063787&rft_dat=%3Cproquest_doaj_%3E1718926529%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1695980530&rft_id=info:pmid/&rfr_iscdi=true |