Loading…

General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler

In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2015-06, Vol.17 (6), p.3787-3805
Main Authors: Flores-Niño, Cuautli, Olivares-Robles, Miguel, Loboda, Igor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3
cites cdi_FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3
container_end_page 3805
container_issue 6
container_start_page 3787
container_title Entropy (Basel, Switzerland)
container_volume 17
creator Flores-Niño, Cuautli
Olivares-Robles, Miguel
Loboda, Igor
description In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE) properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.
doi_str_mv 10.3390/e17063787
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d83462c95b924d189ab461878e473b91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d83462c95b924d189ab461878e473b91</doaj_id><sourcerecordid>1718926529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3</originalsourceid><addsrcrecordid>eNpdUVtLwzAULqLgnD74DwK-6MM0lzZNfBv1CgMfnM8hSU9cR7vUpEX890YnQ_Z0Dt-Nc8myc4KvGZP4BkiJOStFeZBNCJZyljOMD__1x9lJjGuMKaOET7LxETYQdIvmfR-8tivkfECV73ofmwHQcgWh89CCHUJj0etXHKCL6LMZVlsuWSs_9m2zeb_9QVClIyDvkEZ3YyL3AirvWwin2ZHTbYSzvzrN3h7ul9XTbPHy-FzNFzPLJBlmlOJaWFIbIijRdS41cUamLQQTtXO6sMY4w2hhbA5FbTEXjIOz0vASW-7YNHve5tZer1Ufmk6HL-V1o34BH96VDkNjW1C1YDmnVhZG0rwmQmqTcyJKAXnJjCQp63Kble70MUIcVNdEC22rN-DHqEiZTJQXVCbpxZ507cewSZsqwmUhBS4YTqqrrcoGH2MAtxuQYPXzTLV7JvsGKkuQxg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695980530</pqid></control><display><type>article</type><title>General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Flores-Niño, Cuautli ; Olivares-Robles, Miguel ; Loboda, Igor</creator><creatorcontrib>Flores-Niño, Cuautli ; Olivares-Robles, Miguel ; Loboda, Igor</creatorcontrib><description>In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE) properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e17063787</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>coefficient of performance ; Coefficients ; Coolers ; cooling capacity ; Equivalence ; Heat transfer ; Mathematical analysis ; Thermal conductivity ; thermal coupling ; thermoelectric cooler, Peltier effect ; Thermoelectricity ; Transmission electron microscopy</subject><ispartof>Entropy (Basel, Switzerland), 2015-06, Vol.17 (6), p.3787-3805</ispartof><rights>Copyright MDPI AG 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3</citedby><cites>FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3</cites><orcidid>0000-0003-2886-0347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1695980530/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1695980530?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,75096</link.rule.ids></links><search><creatorcontrib>Flores-Niño, Cuautli</creatorcontrib><creatorcontrib>Olivares-Robles, Miguel</creatorcontrib><creatorcontrib>Loboda, Igor</creatorcontrib><title>General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler</title><title>Entropy (Basel, Switzerland)</title><description>In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE) properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.</description><subject>coefficient of performance</subject><subject>Coefficients</subject><subject>Coolers</subject><subject>cooling capacity</subject><subject>Equivalence</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Thermal conductivity</subject><subject>thermal coupling</subject><subject>thermoelectric cooler, Peltier effect</subject><subject>Thermoelectricity</subject><subject>Transmission electron microscopy</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUVtLwzAULqLgnD74DwK-6MM0lzZNfBv1CgMfnM8hSU9cR7vUpEX890YnQ_Z0Dt-Nc8myc4KvGZP4BkiJOStFeZBNCJZyljOMD__1x9lJjGuMKaOET7LxETYQdIvmfR-8tivkfECV73ofmwHQcgWh89CCHUJj0etXHKCL6LMZVlsuWSs_9m2zeb_9QVClIyDvkEZ3YyL3AirvWwin2ZHTbYSzvzrN3h7ul9XTbPHy-FzNFzPLJBlmlOJaWFIbIijRdS41cUamLQQTtXO6sMY4w2hhbA5FbTEXjIOz0vASW-7YNHve5tZer1Ufmk6HL-V1o34BH96VDkNjW1C1YDmnVhZG0rwmQmqTcyJKAXnJjCQp63Kble70MUIcVNdEC22rN-DHqEiZTJQXVCbpxZ507cewSZsqwmUhBS4YTqqrrcoGH2MAtxuQYPXzTLV7JvsGKkuQxg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Flores-Niño, Cuautli</creator><creator>Olivares-Robles, Miguel</creator><creator>Loboda, Igor</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>JG9</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2886-0347</orcidid></search><sort><creationdate>20150601</creationdate><title>General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler</title><author>Flores-Niño, Cuautli ; Olivares-Robles, Miguel ; Loboda, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>coefficient of performance</topic><topic>Coefficients</topic><topic>Coolers</topic><topic>cooling capacity</topic><topic>Equivalence</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Thermal conductivity</topic><topic>thermal coupling</topic><topic>thermoelectric cooler, Peltier effect</topic><topic>Thermoelectricity</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores-Niño, Cuautli</creatorcontrib><creatorcontrib>Olivares-Robles, Miguel</creatorcontrib><creatorcontrib>Loboda, Igor</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores-Niño, Cuautli</au><au>Olivares-Robles, Miguel</au><au>Loboda, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>17</volume><issue>6</issue><spage>3787</spage><epage>3805</epage><pages>3787-3805</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE) properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/e17063787</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2886-0347</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2015-06, Vol.17 (6), p.3787-3805
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d83462c95b924d189ab461878e473b91
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects coefficient of performance
Coefficients
Coolers
cooling capacity
Equivalence
Heat transfer
Mathematical analysis
Thermal conductivity
thermal coupling
thermoelectric cooler, Peltier effect
Thermoelectricity
Transmission electron microscopy
title General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Approach%20for%20Composite%20Thermoelectric%20Systems%20with%20Thermal%20Coupling:%20The%20Case%20of%20a%20Dual%20Thermoelectric%20Cooler&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Flores-Ni%C3%B1o,%20Cuautli&rft.date=2015-06-01&rft.volume=17&rft.issue=6&rft.spage=3787&rft.epage=3805&rft.pages=3787-3805&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e17063787&rft_dat=%3Cproquest_doaj_%3E1718926529%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-220d8c1db1821ad49a1fb9430838dffa5cbbfb325bc4e5dc06836efc9b670c6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1695980530&rft_id=info:pmid/&rfr_iscdi=true