Loading…

Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances

Mobile and wearable devices have enabled numerous applications, including activity tracking, wellness monitoring, and human-computer interaction, that measure and improve our daily lives. Many of these applications are made possible by leveraging the rich collection of low-power sensors found in man...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-02, Vol.22 (4), p.1476
Main Authors: Zhang, Shibo, Li, Yaxuan, Zhang, Shen, Shahabi, Farzad, Xia, Stephen, Deng, Yu, Alshurafa, Nabil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-fa5c8ec6e1685eb2c43933e857850aa2affdb3e735e32ba462b97911b1c0b0163
cites cdi_FETCH-LOGICAL-c438t-fa5c8ec6e1685eb2c43933e857850aa2affdb3e735e32ba462b97911b1c0b0163
container_end_page
container_issue 4
container_start_page 1476
container_title Sensors (Basel, Switzerland)
container_volume 22
creator Zhang, Shibo
Li, Yaxuan
Zhang, Shen
Shahabi, Farzad
Xia, Stephen
Deng, Yu
Alshurafa, Nabil
description Mobile and wearable devices have enabled numerous applications, including activity tracking, wellness monitoring, and human-computer interaction, that measure and improve our daily lives. Many of these applications are made possible by leveraging the rich collection of low-power sensors found in many mobile and wearable devices to perform human activity recognition (HAR). Recently, deep learning has greatly pushed the boundaries of HAR on mobile and wearable devices. This paper systematically categorizes and summarizes existing work that introduces deep learning methods for wearables-based HAR and provides a comprehensive analysis of the current advancements, developing trends, and major challenges. We also present cutting-edge frontiers and future directions for deep learning-based HAR.
doi_str_mv 10.3390/s22041476
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d840901d624a4fde972fc3373097c100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A781610033</galeid><doaj_id>oai_doaj_org_article_d840901d624a4fde972fc3373097c100</doaj_id><sourcerecordid>A781610033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-fa5c8ec6e1685eb2c43933e857850aa2affdb3e735e32ba462b97911b1c0b0163</originalsourceid><addsrcrecordid>eNpdkktv3CAUha2qVZOmXfQPVEjdtItJgYsN7qKSlTYPaaRKfShLhPG1w8gDU7Anyr8vk0lHScUCdPjugQO3KN4yegpQ00-JcyqYkNWz4pgJLhYqC88frY-KVymtKOUAoF4WR1ByJkDK4-L6K-KGLNFE7_xAnCeX89p40tjJbd10R36gDYN3kwue3Lrphlxn1rQjkp_oU4jpM2kytHV4SzLSdFvjLabXxYvejAnfPMwnxe_zb7_OLhfL7xdXZ81yYQWoadGb0iq0FbJKldjyrNYAqEqpSmoMN33ftYASSgTeGlHxtpY1Yy2ztKWsgpPiau_bBbPSm-jWJt7pYJy-F0IctImTsyPqTglaU9ZVXBjRd1hL3lsACbSWllGavb7svTZzu8bOop-iGZ-YPt3x7kYPYauVkjUVPBt8eDCI4c-MadJrlyyOo_EY5qR5lb9LlDWIjL7_D12FOfr8VPcUk1VZ79Kd7qnB5ADO9yGfa_PocO1s8Ni7rDdSsWoXAHLBx32BjSGliP3h9ozqXa_oQ69k9t3juAfyX3PAX7nItzM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633176596</pqid></control><display><type>article</type><title>Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Zhang, Shibo ; Li, Yaxuan ; Zhang, Shen ; Shahabi, Farzad ; Xia, Stephen ; Deng, Yu ; Alshurafa, Nabil</creator><creatorcontrib>Zhang, Shibo ; Li, Yaxuan ; Zhang, Shen ; Shahabi, Farzad ; Xia, Stephen ; Deng, Yu ; Alshurafa, Nabil</creatorcontrib><description>Mobile and wearable devices have enabled numerous applications, including activity tracking, wellness monitoring, and human-computer interaction, that measure and improve our daily lives. Many of these applications are made possible by leveraging the rich collection of low-power sensors found in many mobile and wearable devices to perform human activity recognition (HAR). Recently, deep learning has greatly pushed the boundaries of HAR on mobile and wearable devices. This paper systematically categorizes and summarizes existing work that introduces deep learning methods for wearables-based HAR and provides a comprehensive analysis of the current advancements, developing trends, and major challenges. We also present cutting-edge frontiers and future directions for deep learning-based HAR.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s22041476</identifier><identifier>PMID: 35214377</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Activities of daily living ; Algorithms ; Automobile industry ; Computational linguistics ; Computer network equipment industry ; Datasets ; Deep Learning ; Health aspects ; Human Activities ; Human activity recognition ; Human-computer interaction ; Humans ; Keywords ; Language processing ; Moving object recognition ; Natural language interfaces ; Neural networks ; pervasive computing ; Physiology ; Review ; Sensors ; Smartwatches ; Systematic review ; ubiquitous computing ; Wearable computers ; Wearable Electronic Devices ; wearable sensors ; Wearable technology</subject><ispartof>Sensors (Basel, Switzerland), 2022-02, Vol.22 (4), p.1476</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-fa5c8ec6e1685eb2c43933e857850aa2affdb3e735e32ba462b97911b1c0b0163</citedby><cites>FETCH-LOGICAL-c438t-fa5c8ec6e1685eb2c43933e857850aa2affdb3e735e32ba462b97911b1c0b0163</cites><orcidid>0000-0002-1245-0565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2633176596/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2633176596?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,38507,43886,44581,53782,53784,74173,74887</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35214377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shibo</creatorcontrib><creatorcontrib>Li, Yaxuan</creatorcontrib><creatorcontrib>Zhang, Shen</creatorcontrib><creatorcontrib>Shahabi, Farzad</creatorcontrib><creatorcontrib>Xia, Stephen</creatorcontrib><creatorcontrib>Deng, Yu</creatorcontrib><creatorcontrib>Alshurafa, Nabil</creatorcontrib><title>Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Mobile and wearable devices have enabled numerous applications, including activity tracking, wellness monitoring, and human-computer interaction, that measure and improve our daily lives. Many of these applications are made possible by leveraging the rich collection of low-power sensors found in many mobile and wearable devices to perform human activity recognition (HAR). Recently, deep learning has greatly pushed the boundaries of HAR on mobile and wearable devices. This paper systematically categorizes and summarizes existing work that introduces deep learning methods for wearables-based HAR and provides a comprehensive analysis of the current advancements, developing trends, and major challenges. We also present cutting-edge frontiers and future directions for deep learning-based HAR.</description><subject>Activities of daily living</subject><subject>Algorithms</subject><subject>Automobile industry</subject><subject>Computational linguistics</subject><subject>Computer network equipment industry</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Health aspects</subject><subject>Human Activities</subject><subject>Human activity recognition</subject><subject>Human-computer interaction</subject><subject>Humans</subject><subject>Keywords</subject><subject>Language processing</subject><subject>Moving object recognition</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>pervasive computing</subject><subject>Physiology</subject><subject>Review</subject><subject>Sensors</subject><subject>Smartwatches</subject><subject>Systematic review</subject><subject>ubiquitous computing</subject><subject>Wearable computers</subject><subject>Wearable Electronic Devices</subject><subject>wearable sensors</subject><subject>Wearable technology</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv3CAUha2qVZOmXfQPVEjdtItJgYsN7qKSlTYPaaRKfShLhPG1w8gDU7Anyr8vk0lHScUCdPjugQO3KN4yegpQ00-JcyqYkNWz4pgJLhYqC88frY-KVymtKOUAoF4WR1ByJkDK4-L6K-KGLNFE7_xAnCeX89p40tjJbd10R36gDYN3kwue3Lrphlxn1rQjkp_oU4jpM2kytHV4SzLSdFvjLabXxYvejAnfPMwnxe_zb7_OLhfL7xdXZ81yYQWoadGb0iq0FbJKldjyrNYAqEqpSmoMN33ftYASSgTeGlHxtpY1Yy2ztKWsgpPiau_bBbPSm-jWJt7pYJy-F0IctImTsyPqTglaU9ZVXBjRd1hL3lsACbSWllGavb7svTZzu8bOop-iGZ-YPt3x7kYPYauVkjUVPBt8eDCI4c-MadJrlyyOo_EY5qR5lb9LlDWIjL7_D12FOfr8VPcUk1VZ79Kd7qnB5ADO9yGfa_PocO1s8Ni7rDdSsWoXAHLBx32BjSGliP3h9ozqXa_oQ69k9t3juAfyX3PAX7nItzM</recordid><startdate>20220214</startdate><enddate>20220214</enddate><creator>Zhang, Shibo</creator><creator>Li, Yaxuan</creator><creator>Zhang, Shen</creator><creator>Shahabi, Farzad</creator><creator>Xia, Stephen</creator><creator>Deng, Yu</creator><creator>Alshurafa, Nabil</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1245-0565</orcidid></search><sort><creationdate>20220214</creationdate><title>Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances</title><author>Zhang, Shibo ; Li, Yaxuan ; Zhang, Shen ; Shahabi, Farzad ; Xia, Stephen ; Deng, Yu ; Alshurafa, Nabil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-fa5c8ec6e1685eb2c43933e857850aa2affdb3e735e32ba462b97911b1c0b0163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activities of daily living</topic><topic>Algorithms</topic><topic>Automobile industry</topic><topic>Computational linguistics</topic><topic>Computer network equipment industry</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Health aspects</topic><topic>Human Activities</topic><topic>Human activity recognition</topic><topic>Human-computer interaction</topic><topic>Humans</topic><topic>Keywords</topic><topic>Language processing</topic><topic>Moving object recognition</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>pervasive computing</topic><topic>Physiology</topic><topic>Review</topic><topic>Sensors</topic><topic>Smartwatches</topic><topic>Systematic review</topic><topic>ubiquitous computing</topic><topic>Wearable computers</topic><topic>Wearable Electronic Devices</topic><topic>wearable sensors</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shibo</creatorcontrib><creatorcontrib>Li, Yaxuan</creatorcontrib><creatorcontrib>Zhang, Shen</creatorcontrib><creatorcontrib>Shahabi, Farzad</creatorcontrib><creatorcontrib>Xia, Stephen</creatorcontrib><creatorcontrib>Deng, Yu</creatorcontrib><creatorcontrib>Alshurafa, Nabil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shibo</au><au>Li, Yaxuan</au><au>Zhang, Shen</au><au>Shahabi, Farzad</au><au>Xia, Stephen</au><au>Deng, Yu</au><au>Alshurafa, Nabil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2022-02-14</date><risdate>2022</risdate><volume>22</volume><issue>4</issue><spage>1476</spage><pages>1476-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Mobile and wearable devices have enabled numerous applications, including activity tracking, wellness monitoring, and human-computer interaction, that measure and improve our daily lives. Many of these applications are made possible by leveraging the rich collection of low-power sensors found in many mobile and wearable devices to perform human activity recognition (HAR). Recently, deep learning has greatly pushed the boundaries of HAR on mobile and wearable devices. This paper systematically categorizes and summarizes existing work that introduces deep learning methods for wearables-based HAR and provides a comprehensive analysis of the current advancements, developing trends, and major challenges. We also present cutting-edge frontiers and future directions for deep learning-based HAR.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35214377</pmid><doi>10.3390/s22041476</doi><orcidid>https://orcid.org/0000-0002-1245-0565</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2022-02, Vol.22 (4), p.1476
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d840901d624a4fde972fc3373097c100
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database
subjects Activities of daily living
Algorithms
Automobile industry
Computational linguistics
Computer network equipment industry
Datasets
Deep Learning
Health aspects
Human Activities
Human activity recognition
Human-computer interaction
Humans
Keywords
Language processing
Moving object recognition
Natural language interfaces
Neural networks
pervasive computing
Physiology
Review
Sensors
Smartwatches
Systematic review
ubiquitous computing
Wearable computers
Wearable Electronic Devices
wearable sensors
Wearable technology
title Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20in%20Human%20Activity%20Recognition%20with%20Wearable%20Sensors:%20A%20Review%20on%20Advances&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zhang,%20Shibo&rft.date=2022-02-14&rft.volume=22&rft.issue=4&rft.spage=1476&rft.pages=1476-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s22041476&rft_dat=%3Cgale_doaj_%3EA781610033%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-fa5c8ec6e1685eb2c43933e857850aa2affdb3e735e32ba462b97911b1c0b0163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2633176596&rft_id=info:pmid/35214377&rft_galeid=A781610033&rfr_iscdi=true