Loading…
Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher
The performance optimization and reliability of electromagnetic orbital launchers need to take into account the uncertainties that exist in the manufacturing and service processes. Considering that it is difficult to identify the problem of the parameter probability distribution in advance for elect...
Saved in:
Published in: | Applied sciences 2023-08, Vol.13 (15), p.8806 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-2985a677d775a03009e9320a259ed235d7222877e0a69ba2482de93b3b93f21b3 |
container_end_page | |
container_issue | 15 |
container_start_page | 8806 |
container_title | Applied sciences |
container_volume | 13 |
creator | Jin, Liang Liu, Lu Song, Juheng Yan, Yingang Zhang, Xinchen |
description | The performance optimization and reliability of electromagnetic orbital launchers need to take into account the uncertainties that exist in the manufacturing and service processes. Considering that it is difficult to identify the problem of the parameter probability distribution in advance for electromagnetic orbital launchers, this paper uses the interval number to describe the uncertain variables and realizes the conversion of uncertainty optimization into deterministic optimization problems based on interval sequential relations; moreover, it establishes interval uncertainty optimization methods. The converted deterministic optimization problem is solved by combining a high-precision proxy model with an optimization algorithm to search for the optimal solution set. Finally, reliability estimation is achieved by taking the armature of the electromagnetic orbital launcher as the optimization object. The computational example proves that the method is able to deal with the optimization problem of the parameter interval of an electromagnetic orbital launcher containing uncertain parameters and has good engineering applicability. |
doi_str_mv | 10.3390/app13158806 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d84b3eae92694ef5a82e32d06e3635cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760513836</galeid><doaj_id>oai_doaj_org_article_d84b3eae92694ef5a82e32d06e3635cb</doaj_id><sourcerecordid>A760513836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2985a677d775a03009e9320a259ed235d7222877e0a69ba2482de93b3b93f21b3</originalsourceid><addsrcrecordid>eNpNkU1rHDEMhk1poWGbU__AQI9lU9ua8ccxhLRd2LCX5mw0tmbjZdeeeryF9NfX6ZYS6SAhXj28SIx9FPwGwPIvOM8CxGAMV2_YleRaraEX-u2r_j27XpYDb2EFGMGv2MMmVSq_8Ng9Jk-lYkz1udvNNZ7ib6wxp-6B6lMO3ZRLd38kX0s-4T5Rjb7blTHWtrvFc_JPVD6wdxMeF7r-V1fs8ev9j7vv6-3u2-budrv2oERdS2sGVFoHrQfk0NyQBclRDpaChCFoKaXRmjgqO6LsjQxNMcJoYZJihBXbXLgh48HNJZ6wPLuM0f0d5LJ3WJrBI7lg-hEIyUple5oGNJJABq4IFAz-hfXpwppL_nmmpbpDPpfU7DtpemON7U3fVDcX1R4bNKYp14K-ZaBT9DnRFNv8Vis-tMs29Ip9viz4kpel0PTfpuDu5V_u1b_gDyCKhng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848989484</pqid></control><display><type>article</type><title>Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher</title><source>Publicly Available Content (ProQuest)</source><creator>Jin, Liang ; Liu, Lu ; Song, Juheng ; Yan, Yingang ; Zhang, Xinchen</creator><creatorcontrib>Jin, Liang ; Liu, Lu ; Song, Juheng ; Yan, Yingang ; Zhang, Xinchen</creatorcontrib><description>The performance optimization and reliability of electromagnetic orbital launchers need to take into account the uncertainties that exist in the manufacturing and service processes. Considering that it is difficult to identify the problem of the parameter probability distribution in advance for electromagnetic orbital launchers, this paper uses the interval number to describe the uncertain variables and realizes the conversion of uncertainty optimization into deterministic optimization problems based on interval sequential relations; moreover, it establishes interval uncertainty optimization methods. The converted deterministic optimization problem is solved by combining a high-precision proxy model with an optimization algorithm to search for the optimal solution set. Finally, reliability estimation is achieved by taking the armature of the electromagnetic orbital launcher as the optimization object. The computational example proves that the method is able to deal with the optimization problem of the parameter interval of an electromagnetic orbital launcher containing uncertain parameters and has good engineering applicability.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13158806</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Composite materials ; Design optimization ; Distribution (Probability theory) ; Efficiency ; electromagnetic orbital launcher ; Electromagnetism ; Genetic algorithms ; interval number ; Linear programming ; Mathematical optimization ; Methods ; multi-objective optimization ; Optimization algorithms ; Powertrain ; Probability distribution ; uncertainty parameters ; Variables</subject><ispartof>Applied sciences, 2023-08, Vol.13 (15), p.8806</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-2985a677d775a03009e9320a259ed235d7222877e0a69ba2482de93b3b93f21b3</cites><orcidid>0000-0003-4189-3776 ; 0000-0003-4526-5865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2848989484/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2848989484?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Song, Juheng</creatorcontrib><creatorcontrib>Yan, Yingang</creatorcontrib><creatorcontrib>Zhang, Xinchen</creatorcontrib><title>Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher</title><title>Applied sciences</title><description>The performance optimization and reliability of electromagnetic orbital launchers need to take into account the uncertainties that exist in the manufacturing and service processes. Considering that it is difficult to identify the problem of the parameter probability distribution in advance for electromagnetic orbital launchers, this paper uses the interval number to describe the uncertain variables and realizes the conversion of uncertainty optimization into deterministic optimization problems based on interval sequential relations; moreover, it establishes interval uncertainty optimization methods. The converted deterministic optimization problem is solved by combining a high-precision proxy model with an optimization algorithm to search for the optimal solution set. Finally, reliability estimation is achieved by taking the armature of the electromagnetic orbital launcher as the optimization object. The computational example proves that the method is able to deal with the optimization problem of the parameter interval of an electromagnetic orbital launcher containing uncertain parameters and has good engineering applicability.</description><subject>Algorithms</subject><subject>Composite materials</subject><subject>Design optimization</subject><subject>Distribution (Probability theory)</subject><subject>Efficiency</subject><subject>electromagnetic orbital launcher</subject><subject>Electromagnetism</subject><subject>Genetic algorithms</subject><subject>interval number</subject><subject>Linear programming</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>multi-objective optimization</subject><subject>Optimization algorithms</subject><subject>Powertrain</subject><subject>Probability distribution</subject><subject>uncertainty parameters</subject><subject>Variables</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1rHDEMhk1poWGbU__AQI9lU9ua8ccxhLRd2LCX5mw0tmbjZdeeeryF9NfX6ZYS6SAhXj28SIx9FPwGwPIvOM8CxGAMV2_YleRaraEX-u2r_j27XpYDb2EFGMGv2MMmVSq_8Ng9Jk-lYkz1udvNNZ7ib6wxp-6B6lMO3ZRLd38kX0s-4T5Rjb7blTHWtrvFc_JPVD6wdxMeF7r-V1fs8ev9j7vv6-3u2-budrv2oERdS2sGVFoHrQfk0NyQBclRDpaChCFoKaXRmjgqO6LsjQxNMcJoYZJihBXbXLgh48HNJZ6wPLuM0f0d5LJ3WJrBI7lg-hEIyUple5oGNJJABq4IFAz-hfXpwppL_nmmpbpDPpfU7DtpemON7U3fVDcX1R4bNKYp14K-ZaBT9DnRFNv8Vis-tMs29Ip9viz4kpel0PTfpuDu5V_u1b_gDyCKhng</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Jin, Liang</creator><creator>Liu, Lu</creator><creator>Song, Juheng</creator><creator>Yan, Yingang</creator><creator>Zhang, Xinchen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4189-3776</orcidid><orcidid>https://orcid.org/0000-0003-4526-5865</orcidid></search><sort><creationdate>20230801</creationdate><title>Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher</title><author>Jin, Liang ; Liu, Lu ; Song, Juheng ; Yan, Yingang ; Zhang, Xinchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2985a677d775a03009e9320a259ed235d7222877e0a69ba2482de93b3b93f21b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Composite materials</topic><topic>Design optimization</topic><topic>Distribution (Probability theory)</topic><topic>Efficiency</topic><topic>electromagnetic orbital launcher</topic><topic>Electromagnetism</topic><topic>Genetic algorithms</topic><topic>interval number</topic><topic>Linear programming</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>multi-objective optimization</topic><topic>Optimization algorithms</topic><topic>Powertrain</topic><topic>Probability distribution</topic><topic>uncertainty parameters</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Song, Juheng</creatorcontrib><creatorcontrib>Yan, Yingang</creatorcontrib><creatorcontrib>Zhang, Xinchen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Liang</au><au>Liu, Lu</au><au>Song, Juheng</au><au>Yan, Yingang</au><au>Zhang, Xinchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher</atitle><jtitle>Applied sciences</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>15</issue><spage>8806</spage><pages>8806-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The performance optimization and reliability of electromagnetic orbital launchers need to take into account the uncertainties that exist in the manufacturing and service processes. Considering that it is difficult to identify the problem of the parameter probability distribution in advance for electromagnetic orbital launchers, this paper uses the interval number to describe the uncertain variables and realizes the conversion of uncertainty optimization into deterministic optimization problems based on interval sequential relations; moreover, it establishes interval uncertainty optimization methods. The converted deterministic optimization problem is solved by combining a high-precision proxy model with an optimization algorithm to search for the optimal solution set. Finally, reliability estimation is achieved by taking the armature of the electromagnetic orbital launcher as the optimization object. The computational example proves that the method is able to deal with the optimization problem of the parameter interval of an electromagnetic orbital launcher containing uncertain parameters and has good engineering applicability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13158806</doi><orcidid>https://orcid.org/0000-0003-4189-3776</orcidid><orcidid>https://orcid.org/0000-0003-4526-5865</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-08, Vol.13 (15), p.8806 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d84b3eae92694ef5a82e32d06e3635cb |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Composite materials Design optimization Distribution (Probability theory) Efficiency electromagnetic orbital launcher Electromagnetism Genetic algorithms interval number Linear programming Mathematical optimization Methods multi-objective optimization Optimization algorithms Powertrain Probability distribution uncertainty parameters Variables |
title | Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interval%20Uncertainty%20Optimization%20Method%20for%20Electromagnetic%20Orbital%20Launcher&rft.jtitle=Applied%20sciences&rft.au=Jin,%20Liang&rft.date=2023-08-01&rft.volume=13&rft.issue=15&rft.spage=8806&rft.pages=8806-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13158806&rft_dat=%3Cgale_doaj_%3EA760513836%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-2985a677d775a03009e9320a259ed235d7222877e0a69ba2482de93b3b93f21b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848989484&rft_id=info:pmid/&rft_galeid=A760513836&rfr_iscdi=true |