Loading…

Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher

The performance optimization and reliability of electromagnetic orbital launchers need to take into account the uncertainties that exist in the manufacturing and service processes. Considering that it is difficult to identify the problem of the parameter probability distribution in advance for elect...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-08, Vol.13 (15), p.8806
Main Authors: Jin, Liang, Liu, Lu, Song, Juheng, Yan, Yingang, Zhang, Xinchen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-2985a677d775a03009e9320a259ed235d7222877e0a69ba2482de93b3b93f21b3
container_end_page
container_issue 15
container_start_page 8806
container_title Applied sciences
container_volume 13
creator Jin, Liang
Liu, Lu
Song, Juheng
Yan, Yingang
Zhang, Xinchen
description The performance optimization and reliability of electromagnetic orbital launchers need to take into account the uncertainties that exist in the manufacturing and service processes. Considering that it is difficult to identify the problem of the parameter probability distribution in advance for electromagnetic orbital launchers, this paper uses the interval number to describe the uncertain variables and realizes the conversion of uncertainty optimization into deterministic optimization problems based on interval sequential relations; moreover, it establishes interval uncertainty optimization methods. The converted deterministic optimization problem is solved by combining a high-precision proxy model with an optimization algorithm to search for the optimal solution set. Finally, reliability estimation is achieved by taking the armature of the electromagnetic orbital launcher as the optimization object. The computational example proves that the method is able to deal with the optimization problem of the parameter interval of an electromagnetic orbital launcher containing uncertain parameters and has good engineering applicability.
doi_str_mv 10.3390/app13158806
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d84b3eae92694ef5a82e32d06e3635cb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760513836</galeid><doaj_id>oai_doaj_org_article_d84b3eae92694ef5a82e32d06e3635cb</doaj_id><sourcerecordid>A760513836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2985a677d775a03009e9320a259ed235d7222877e0a69ba2482de93b3b93f21b3</originalsourceid><addsrcrecordid>eNpNkU1rHDEMhk1poWGbU__AQI9lU9ua8ccxhLRd2LCX5mw0tmbjZdeeeryF9NfX6ZYS6SAhXj28SIx9FPwGwPIvOM8CxGAMV2_YleRaraEX-u2r_j27XpYDb2EFGMGv2MMmVSq_8Ng9Jk-lYkz1udvNNZ7ib6wxp-6B6lMO3ZRLd38kX0s-4T5Rjb7blTHWtrvFc_JPVD6wdxMeF7r-V1fs8ev9j7vv6-3u2-budrv2oERdS2sGVFoHrQfk0NyQBclRDpaChCFoKaXRmjgqO6LsjQxNMcJoYZJihBXbXLgh48HNJZ6wPLuM0f0d5LJ3WJrBI7lg-hEIyUple5oGNJJABq4IFAz-hfXpwppL_nmmpbpDPpfU7DtpemON7U3fVDcX1R4bNKYp14K-ZaBT9DnRFNv8Vis-tMs29Ip9viz4kpel0PTfpuDu5V_u1b_gDyCKhng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848989484</pqid></control><display><type>article</type><title>Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher</title><source>Publicly Available Content (ProQuest)</source><creator>Jin, Liang ; Liu, Lu ; Song, Juheng ; Yan, Yingang ; Zhang, Xinchen</creator><creatorcontrib>Jin, Liang ; Liu, Lu ; Song, Juheng ; Yan, Yingang ; Zhang, Xinchen</creatorcontrib><description>The performance optimization and reliability of electromagnetic orbital launchers need to take into account the uncertainties that exist in the manufacturing and service processes. Considering that it is difficult to identify the problem of the parameter probability distribution in advance for electromagnetic orbital launchers, this paper uses the interval number to describe the uncertain variables and realizes the conversion of uncertainty optimization into deterministic optimization problems based on interval sequential relations; moreover, it establishes interval uncertainty optimization methods. The converted deterministic optimization problem is solved by combining a high-precision proxy model with an optimization algorithm to search for the optimal solution set. Finally, reliability estimation is achieved by taking the armature of the electromagnetic orbital launcher as the optimization object. The computational example proves that the method is able to deal with the optimization problem of the parameter interval of an electromagnetic orbital launcher containing uncertain parameters and has good engineering applicability.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13158806</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Composite materials ; Design optimization ; Distribution (Probability theory) ; Efficiency ; electromagnetic orbital launcher ; Electromagnetism ; Genetic algorithms ; interval number ; Linear programming ; Mathematical optimization ; Methods ; multi-objective optimization ; Optimization algorithms ; Powertrain ; Probability distribution ; uncertainty parameters ; Variables</subject><ispartof>Applied sciences, 2023-08, Vol.13 (15), p.8806</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-2985a677d775a03009e9320a259ed235d7222877e0a69ba2482de93b3b93f21b3</cites><orcidid>0000-0003-4189-3776 ; 0000-0003-4526-5865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2848989484/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2848989484?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Song, Juheng</creatorcontrib><creatorcontrib>Yan, Yingang</creatorcontrib><creatorcontrib>Zhang, Xinchen</creatorcontrib><title>Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher</title><title>Applied sciences</title><description>The performance optimization and reliability of electromagnetic orbital launchers need to take into account the uncertainties that exist in the manufacturing and service processes. Considering that it is difficult to identify the problem of the parameter probability distribution in advance for electromagnetic orbital launchers, this paper uses the interval number to describe the uncertain variables and realizes the conversion of uncertainty optimization into deterministic optimization problems based on interval sequential relations; moreover, it establishes interval uncertainty optimization methods. The converted deterministic optimization problem is solved by combining a high-precision proxy model with an optimization algorithm to search for the optimal solution set. Finally, reliability estimation is achieved by taking the armature of the electromagnetic orbital launcher as the optimization object. The computational example proves that the method is able to deal with the optimization problem of the parameter interval of an electromagnetic orbital launcher containing uncertain parameters and has good engineering applicability.</description><subject>Algorithms</subject><subject>Composite materials</subject><subject>Design optimization</subject><subject>Distribution (Probability theory)</subject><subject>Efficiency</subject><subject>electromagnetic orbital launcher</subject><subject>Electromagnetism</subject><subject>Genetic algorithms</subject><subject>interval number</subject><subject>Linear programming</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>multi-objective optimization</subject><subject>Optimization algorithms</subject><subject>Powertrain</subject><subject>Probability distribution</subject><subject>uncertainty parameters</subject><subject>Variables</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1rHDEMhk1poWGbU__AQI9lU9ua8ccxhLRd2LCX5mw0tmbjZdeeeryF9NfX6ZYS6SAhXj28SIx9FPwGwPIvOM8CxGAMV2_YleRaraEX-u2r_j27XpYDb2EFGMGv2MMmVSq_8Ng9Jk-lYkz1udvNNZ7ib6wxp-6B6lMO3ZRLd38kX0s-4T5Rjb7blTHWtrvFc_JPVD6wdxMeF7r-V1fs8ev9j7vv6-3u2-budrv2oERdS2sGVFoHrQfk0NyQBclRDpaChCFoKaXRmjgqO6LsjQxNMcJoYZJihBXbXLgh48HNJZ6wPLuM0f0d5LJ3WJrBI7lg-hEIyUple5oGNJJABq4IFAz-hfXpwppL_nmmpbpDPpfU7DtpemON7U3fVDcX1R4bNKYp14K-ZaBT9DnRFNv8Vis-tMs29Ip9viz4kpel0PTfpuDu5V_u1b_gDyCKhng</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Jin, Liang</creator><creator>Liu, Lu</creator><creator>Song, Juheng</creator><creator>Yan, Yingang</creator><creator>Zhang, Xinchen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4189-3776</orcidid><orcidid>https://orcid.org/0000-0003-4526-5865</orcidid></search><sort><creationdate>20230801</creationdate><title>Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher</title><author>Jin, Liang ; Liu, Lu ; Song, Juheng ; Yan, Yingang ; Zhang, Xinchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2985a677d775a03009e9320a259ed235d7222877e0a69ba2482de93b3b93f21b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Composite materials</topic><topic>Design optimization</topic><topic>Distribution (Probability theory)</topic><topic>Efficiency</topic><topic>electromagnetic orbital launcher</topic><topic>Electromagnetism</topic><topic>Genetic algorithms</topic><topic>interval number</topic><topic>Linear programming</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>multi-objective optimization</topic><topic>Optimization algorithms</topic><topic>Powertrain</topic><topic>Probability distribution</topic><topic>uncertainty parameters</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Liang</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Song, Juheng</creatorcontrib><creatorcontrib>Yan, Yingang</creatorcontrib><creatorcontrib>Zhang, Xinchen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Liang</au><au>Liu, Lu</au><au>Song, Juheng</au><au>Yan, Yingang</au><au>Zhang, Xinchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher</atitle><jtitle>Applied sciences</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>15</issue><spage>8806</spage><pages>8806-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The performance optimization and reliability of electromagnetic orbital launchers need to take into account the uncertainties that exist in the manufacturing and service processes. Considering that it is difficult to identify the problem of the parameter probability distribution in advance for electromagnetic orbital launchers, this paper uses the interval number to describe the uncertain variables and realizes the conversion of uncertainty optimization into deterministic optimization problems based on interval sequential relations; moreover, it establishes interval uncertainty optimization methods. The converted deterministic optimization problem is solved by combining a high-precision proxy model with an optimization algorithm to search for the optimal solution set. Finally, reliability estimation is achieved by taking the armature of the electromagnetic orbital launcher as the optimization object. The computational example proves that the method is able to deal with the optimization problem of the parameter interval of an electromagnetic orbital launcher containing uncertain parameters and has good engineering applicability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13158806</doi><orcidid>https://orcid.org/0000-0003-4189-3776</orcidid><orcidid>https://orcid.org/0000-0003-4526-5865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-08, Vol.13 (15), p.8806
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d84b3eae92694ef5a82e32d06e3635cb
source Publicly Available Content (ProQuest)
subjects Algorithms
Composite materials
Design optimization
Distribution (Probability theory)
Efficiency
electromagnetic orbital launcher
Electromagnetism
Genetic algorithms
interval number
Linear programming
Mathematical optimization
Methods
multi-objective optimization
Optimization algorithms
Powertrain
Probability distribution
uncertainty parameters
Variables
title Interval Uncertainty Optimization Method for Electromagnetic Orbital Launcher
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interval%20Uncertainty%20Optimization%20Method%20for%20Electromagnetic%20Orbital%20Launcher&rft.jtitle=Applied%20sciences&rft.au=Jin,%20Liang&rft.date=2023-08-01&rft.volume=13&rft.issue=15&rft.spage=8806&rft.pages=8806-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13158806&rft_dat=%3Cgale_doaj_%3EA760513836%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-2985a677d775a03009e9320a259ed235d7222877e0a69ba2482de93b3b93f21b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848989484&rft_id=info:pmid/&rft_galeid=A760513836&rfr_iscdi=true