Loading…

Validation of ablation site classification accuracy and trends in the prediction of potential reconnection sites for atrial fibrillation using the CARTONET® R12.1 model

Background CARTONET® enables automatic ablation site classification and reconnection site prediction using machine learning. However, the accuracy of the site classification model and trends of the site prediction model for potential reconnection sites are uncertain. Methods We studied a total of 39...

Full description

Saved in:
Bibliographic Details
Published in:Journal of arrhythmia 2024-10, Vol.40 (5), p.1085-1092
Main Authors: Sasaki, Wataru, Tanaka, Naomichi, Matsumoto, Kazuhisa, Kawano, Daisuke, Narita, Masataka, Naganuma, Tsukasa, Tsutsui, Kenta, Mori, Hitoshi, Ikeda, Yoshifumi, Arai, Takahide, Matsumoto, Kazuo, Kato, Ritsushi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1092
container_issue 5
container_start_page 1085
container_title Journal of arrhythmia
container_volume 40
creator Sasaki, Wataru
Tanaka, Naomichi
Matsumoto, Kazuhisa
Kawano, Daisuke
Narita, Masataka
Naganuma, Tsukasa
Tsutsui, Kenta
Mori, Hitoshi
Ikeda, Yoshifumi
Arai, Takahide
Matsumoto, Kazuo
Kato, Ritsushi
description Background CARTONET® enables automatic ablation site classification and reconnection site prediction using machine learning. However, the accuracy of the site classification model and trends of the site prediction model for potential reconnection sites are uncertain. Methods We studied a total of 396 cases. About 313 patients underwent pulmonary vein isolation (PVI), including a cavotricuspid isthmus (CTI) ablation (PVI group) and 83 underwent PVI and additional ablation (i.e., box isolation) (PVI+ group). We investigated the sensitivity and positive predictive value (PPV) for automatic site classification in the total cohort and compared these metrics for PV lesions versus non‐PV lesions. The distribution of potential reconnection sites and confidence level for each site was also investigated. Results A total of 29,422 points were analyzed (PV lesions [n = 22 418], non‐PV lesions [n = 7004]). The sensitivity and PPV of the total cohort were 71.4% and 84.6%, respectively. The sensitivity and PPV of PV lesions were significantly higher than those of non‐PV lesions (PV lesions vs. non‐PV lesions, %; sensitivity, 75.3 vs. 67.5, p 
doi_str_mv 10.1002/joa3.13131
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d84b495e277a492ebc4b065add2f8f69</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d84b495e277a492ebc4b065add2f8f69</doaj_id><sourcerecordid>3117618325</sourcerecordid><originalsourceid>FETCH-LOGICAL-d3691-c47db652ff13ce0cb1932176ff9803c723d1ed08e9ce2b8652ef95c09e1fe6eb3</originalsourceid><addsrcrecordid>eNpdks9uEzEQxlcIREvhwgMgS1y4JHhs778TiqJSiioiVYGr5bXHqaONHezdojwSlz4ET8Zmk0YU-eDRfJ9-Ho--LHsLdAqUso_roPgU-HCeZedQVXzCQFTPx5pOBCuLs-xVSmtK80oAvMzOeC2gYKI8z37_UK0zqnPBk2CJatpDnVyHRLcqJWedPvSU1n1UekeUN6SL6E0izpPuDsk2onH6kbINHfrOqZZE1MF71CdmIjZEorq4V61romuPL_bJ-dUIm89ul4tvl8s_D-QW2BTIJhhsX2cvrGoTvjneF9n3z5fL-ZfJzeLqej67mRhe1DDRojRNkTNrgWukuoGaMygLa-uKcl0ybgANrbDWyJpqcKKtc01rBIsFNvwiuz5wTVBruY1uo-JOBuXk2AhxJVXsnG5Rmko0os6RlaUSNcNGi4YWuTKG2coW9cD6dGBt-2aDRg9biap9An2qeHcnV-FeAohS5AIGwocjIYafPaZOblzSOCzNY-iT5DD8DSrO8sH6_j_rOvTRD7vau4pccBhd7_4d6TTLYyQGAxwMv1yLu5MOVO7DJvdhk2PY5NfFjI8V_wuHGMp-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116543125</pqid></control><display><type>article</type><title>Validation of ablation site classification accuracy and trends in the prediction of potential reconnection sites for atrial fibrillation using the CARTONET® R12.1 model</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><creator>Sasaki, Wataru ; Tanaka, Naomichi ; Matsumoto, Kazuhisa ; Kawano, Daisuke ; Narita, Masataka ; Naganuma, Tsukasa ; Tsutsui, Kenta ; Mori, Hitoshi ; Ikeda, Yoshifumi ; Arai, Takahide ; Matsumoto, Kazuo ; Kato, Ritsushi</creator><creatorcontrib>Sasaki, Wataru ; Tanaka, Naomichi ; Matsumoto, Kazuhisa ; Kawano, Daisuke ; Narita, Masataka ; Naganuma, Tsukasa ; Tsutsui, Kenta ; Mori, Hitoshi ; Ikeda, Yoshifumi ; Arai, Takahide ; Matsumoto, Kazuo ; Kato, Ritsushi</creatorcontrib><description>Background CARTONET® enables automatic ablation site classification and reconnection site prediction using machine learning. However, the accuracy of the site classification model and trends of the site prediction model for potential reconnection sites are uncertain. Methods We studied a total of 396 cases. About 313 patients underwent pulmonary vein isolation (PVI), including a cavotricuspid isthmus (CTI) ablation (PVI group) and 83 underwent PVI and additional ablation (i.e., box isolation) (PVI+ group). We investigated the sensitivity and positive predictive value (PPV) for automatic site classification in the total cohort and compared these metrics for PV lesions versus non‐PV lesions. The distribution of potential reconnection sites and confidence level for each site was also investigated. Results A total of 29,422 points were analyzed (PV lesions [n = 22 418], non‐PV lesions [n = 7004]). The sensitivity and PPV of the total cohort were 71.4% and 84.6%, respectively. The sensitivity and PPV of PV lesions were significantly higher than those of non‐PV lesions (PV lesions vs. non‐PV lesions, %; sensitivity, 75.3 vs. 67.5, p &lt; .05; PPV, 91.2 vs. 67.9, p &lt; .05). CTI and superior vena cava could not be recognized or analyzed. In the potential reconnection prediction model, the incidence of potential reconnections was highest in the posterior, while the confidence was the highest in the roof. Conclusion The automatic site classification of the CARTONET®R12.1 model demonstrates relatively high accuracy in pulmonary veins excluding the carina. The prediction of potential reconnection sites feature tends to anticipate areas with poor catheter stability as reconnection sites. The automatic site classification of the CARTONET®R12.1 model demonstrates relatively high accuracy in pulmonary veins excluding the carina. The prediction of potential reconnection sites feature tends to anticipate areas with poor catheter stability as reconnection sites.</description><identifier>ISSN: 1880-4276</identifier><identifier>EISSN: 1883-2148</identifier><identifier>DOI: 10.1002/joa3.13131</identifier><identifier>PMID: 39416247</identifier><language>eng</language><publisher>Japan: John Wiley &amp; Sons, Inc</publisher><subject>Ablation ; Annotations ; Automatic classification ; Cardiac arrhythmia ; CARTONET ; Catheters ; Esophagus ; external validation ; Machine learning ; Original ; pulmonary vein isolation</subject><ispartof>Journal of arrhythmia, 2024-10, Vol.40 (5), p.1085-1092</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Heart Rhythm Society.</rights><rights>2024 The Author(s). Journal of Arrhythmia published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Heart Rhythm Society.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3347-6772 ; 0000-0002-9989-8708 ; 0000-0002-5121-6974 ; 0000-0003-1418-6566 ; 0000-0002-5648-8135 ; 0000-0002-1172-2995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3116543125/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3116543125?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39416247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sasaki, Wataru</creatorcontrib><creatorcontrib>Tanaka, Naomichi</creatorcontrib><creatorcontrib>Matsumoto, Kazuhisa</creatorcontrib><creatorcontrib>Kawano, Daisuke</creatorcontrib><creatorcontrib>Narita, Masataka</creatorcontrib><creatorcontrib>Naganuma, Tsukasa</creatorcontrib><creatorcontrib>Tsutsui, Kenta</creatorcontrib><creatorcontrib>Mori, Hitoshi</creatorcontrib><creatorcontrib>Ikeda, Yoshifumi</creatorcontrib><creatorcontrib>Arai, Takahide</creatorcontrib><creatorcontrib>Matsumoto, Kazuo</creatorcontrib><creatorcontrib>Kato, Ritsushi</creatorcontrib><title>Validation of ablation site classification accuracy and trends in the prediction of potential reconnection sites for atrial fibrillation using the CARTONET® R12.1 model</title><title>Journal of arrhythmia</title><addtitle>J Arrhythm</addtitle><description>Background CARTONET® enables automatic ablation site classification and reconnection site prediction using machine learning. However, the accuracy of the site classification model and trends of the site prediction model for potential reconnection sites are uncertain. Methods We studied a total of 396 cases. About 313 patients underwent pulmonary vein isolation (PVI), including a cavotricuspid isthmus (CTI) ablation (PVI group) and 83 underwent PVI and additional ablation (i.e., box isolation) (PVI+ group). We investigated the sensitivity and positive predictive value (PPV) for automatic site classification in the total cohort and compared these metrics for PV lesions versus non‐PV lesions. The distribution of potential reconnection sites and confidence level for each site was also investigated. Results A total of 29,422 points were analyzed (PV lesions [n = 22 418], non‐PV lesions [n = 7004]). The sensitivity and PPV of the total cohort were 71.4% and 84.6%, respectively. The sensitivity and PPV of PV lesions were significantly higher than those of non‐PV lesions (PV lesions vs. non‐PV lesions, %; sensitivity, 75.3 vs. 67.5, p &lt; .05; PPV, 91.2 vs. 67.9, p &lt; .05). CTI and superior vena cava could not be recognized or analyzed. In the potential reconnection prediction model, the incidence of potential reconnections was highest in the posterior, while the confidence was the highest in the roof. Conclusion The automatic site classification of the CARTONET®R12.1 model demonstrates relatively high accuracy in pulmonary veins excluding the carina. The prediction of potential reconnection sites feature tends to anticipate areas with poor catheter stability as reconnection sites. The automatic site classification of the CARTONET®R12.1 model demonstrates relatively high accuracy in pulmonary veins excluding the carina. The prediction of potential reconnection sites feature tends to anticipate areas with poor catheter stability as reconnection sites.</description><subject>Ablation</subject><subject>Annotations</subject><subject>Automatic classification</subject><subject>Cardiac arrhythmia</subject><subject>CARTONET</subject><subject>Catheters</subject><subject>Esophagus</subject><subject>external validation</subject><subject>Machine learning</subject><subject>Original</subject><subject>pulmonary vein isolation</subject><issn>1880-4276</issn><issn>1883-2148</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9uEzEQxlcIREvhwgMgS1y4JHhs778TiqJSiioiVYGr5bXHqaONHezdojwSlz4ET8Zmk0YU-eDRfJ9-Ho--LHsLdAqUso_roPgU-HCeZedQVXzCQFTPx5pOBCuLs-xVSmtK80oAvMzOeC2gYKI8z37_UK0zqnPBk2CJatpDnVyHRLcqJWedPvSU1n1UekeUN6SL6E0izpPuDsk2onH6kbINHfrOqZZE1MF71CdmIjZEorq4V61romuPL_bJ-dUIm89ul4tvl8s_D-QW2BTIJhhsX2cvrGoTvjneF9n3z5fL-ZfJzeLqej67mRhe1DDRojRNkTNrgWukuoGaMygLa-uKcl0ybgANrbDWyJpqcKKtc01rBIsFNvwiuz5wTVBruY1uo-JOBuXk2AhxJVXsnG5Rmko0os6RlaUSNcNGi4YWuTKG2coW9cD6dGBt-2aDRg9biap9An2qeHcnV-FeAohS5AIGwocjIYafPaZOblzSOCzNY-iT5DD8DSrO8sH6_j_rOvTRD7vau4pccBhd7_4d6TTLYyQGAxwMv1yLu5MOVO7DJvdhk2PY5NfFjI8V_wuHGMp-</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Sasaki, Wataru</creator><creator>Tanaka, Naomichi</creator><creator>Matsumoto, Kazuhisa</creator><creator>Kawano, Daisuke</creator><creator>Narita, Masataka</creator><creator>Naganuma, Tsukasa</creator><creator>Tsutsui, Kenta</creator><creator>Mori, Hitoshi</creator><creator>Ikeda, Yoshifumi</creator><creator>Arai, Takahide</creator><creator>Matsumoto, Kazuo</creator><creator>Kato, Ritsushi</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3347-6772</orcidid><orcidid>https://orcid.org/0000-0002-9989-8708</orcidid><orcidid>https://orcid.org/0000-0002-5121-6974</orcidid><orcidid>https://orcid.org/0000-0003-1418-6566</orcidid><orcidid>https://orcid.org/0000-0002-5648-8135</orcidid><orcidid>https://orcid.org/0000-0002-1172-2995</orcidid></search><sort><creationdate>202410</creationdate><title>Validation of ablation site classification accuracy and trends in the prediction of potential reconnection sites for atrial fibrillation using the CARTONET® R12.1 model</title><author>Sasaki, Wataru ; Tanaka, Naomichi ; Matsumoto, Kazuhisa ; Kawano, Daisuke ; Narita, Masataka ; Naganuma, Tsukasa ; Tsutsui, Kenta ; Mori, Hitoshi ; Ikeda, Yoshifumi ; Arai, Takahide ; Matsumoto, Kazuo ; Kato, Ritsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d3691-c47db652ff13ce0cb1932176ff9803c723d1ed08e9ce2b8652ef95c09e1fe6eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Annotations</topic><topic>Automatic classification</topic><topic>Cardiac arrhythmia</topic><topic>CARTONET</topic><topic>Catheters</topic><topic>Esophagus</topic><topic>external validation</topic><topic>Machine learning</topic><topic>Original</topic><topic>pulmonary vein isolation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasaki, Wataru</creatorcontrib><creatorcontrib>Tanaka, Naomichi</creatorcontrib><creatorcontrib>Matsumoto, Kazuhisa</creatorcontrib><creatorcontrib>Kawano, Daisuke</creatorcontrib><creatorcontrib>Narita, Masataka</creatorcontrib><creatorcontrib>Naganuma, Tsukasa</creatorcontrib><creatorcontrib>Tsutsui, Kenta</creatorcontrib><creatorcontrib>Mori, Hitoshi</creatorcontrib><creatorcontrib>Ikeda, Yoshifumi</creatorcontrib><creatorcontrib>Arai, Takahide</creatorcontrib><creatorcontrib>Matsumoto, Kazuo</creatorcontrib><creatorcontrib>Kato, Ritsushi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Journal of arrhythmia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasaki, Wataru</au><au>Tanaka, Naomichi</au><au>Matsumoto, Kazuhisa</au><au>Kawano, Daisuke</au><au>Narita, Masataka</au><au>Naganuma, Tsukasa</au><au>Tsutsui, Kenta</au><au>Mori, Hitoshi</au><au>Ikeda, Yoshifumi</au><au>Arai, Takahide</au><au>Matsumoto, Kazuo</au><au>Kato, Ritsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of ablation site classification accuracy and trends in the prediction of potential reconnection sites for atrial fibrillation using the CARTONET® R12.1 model</atitle><jtitle>Journal of arrhythmia</jtitle><addtitle>J Arrhythm</addtitle><date>2024-10</date><risdate>2024</risdate><volume>40</volume><issue>5</issue><spage>1085</spage><epage>1092</epage><pages>1085-1092</pages><issn>1880-4276</issn><eissn>1883-2148</eissn><abstract>Background CARTONET® enables automatic ablation site classification and reconnection site prediction using machine learning. However, the accuracy of the site classification model and trends of the site prediction model for potential reconnection sites are uncertain. Methods We studied a total of 396 cases. About 313 patients underwent pulmonary vein isolation (PVI), including a cavotricuspid isthmus (CTI) ablation (PVI group) and 83 underwent PVI and additional ablation (i.e., box isolation) (PVI+ group). We investigated the sensitivity and positive predictive value (PPV) for automatic site classification in the total cohort and compared these metrics for PV lesions versus non‐PV lesions. The distribution of potential reconnection sites and confidence level for each site was also investigated. Results A total of 29,422 points were analyzed (PV lesions [n = 22 418], non‐PV lesions [n = 7004]). The sensitivity and PPV of the total cohort were 71.4% and 84.6%, respectively. The sensitivity and PPV of PV lesions were significantly higher than those of non‐PV lesions (PV lesions vs. non‐PV lesions, %; sensitivity, 75.3 vs. 67.5, p &lt; .05; PPV, 91.2 vs. 67.9, p &lt; .05). CTI and superior vena cava could not be recognized or analyzed. In the potential reconnection prediction model, the incidence of potential reconnections was highest in the posterior, while the confidence was the highest in the roof. Conclusion The automatic site classification of the CARTONET®R12.1 model demonstrates relatively high accuracy in pulmonary veins excluding the carina. The prediction of potential reconnection sites feature tends to anticipate areas with poor catheter stability as reconnection sites. The automatic site classification of the CARTONET®R12.1 model demonstrates relatively high accuracy in pulmonary veins excluding the carina. The prediction of potential reconnection sites feature tends to anticipate areas with poor catheter stability as reconnection sites.</abstract><cop>Japan</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39416247</pmid><doi>10.1002/joa3.13131</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3347-6772</orcidid><orcidid>https://orcid.org/0000-0002-9989-8708</orcidid><orcidid>https://orcid.org/0000-0002-5121-6974</orcidid><orcidid>https://orcid.org/0000-0003-1418-6566</orcidid><orcidid>https://orcid.org/0000-0002-5648-8135</orcidid><orcidid>https://orcid.org/0000-0002-1172-2995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1880-4276
ispartof Journal of arrhythmia, 2024-10, Vol.40 (5), p.1085-1092
issn 1880-4276
1883-2148
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d84b495e277a492ebc4b065add2f8f69
source PubMed Central (Open Access); Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access
subjects Ablation
Annotations
Automatic classification
Cardiac arrhythmia
CARTONET
Catheters
Esophagus
external validation
Machine learning
Original
pulmonary vein isolation
title Validation of ablation site classification accuracy and trends in the prediction of potential reconnection sites for atrial fibrillation using the CARTONET® R12.1 model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20ablation%20site%20classification%20accuracy%20and%20trends%20in%20the%20prediction%20of%20potential%20reconnection%20sites%20for%20atrial%20fibrillation%20using%20the%20CARTONET%C2%AE%20R12.1%20model&rft.jtitle=Journal%20of%20arrhythmia&rft.au=Sasaki,%20Wataru&rft.date=2024-10&rft.volume=40&rft.issue=5&rft.spage=1085&rft.epage=1092&rft.pages=1085-1092&rft.issn=1880-4276&rft.eissn=1883-2148&rft_id=info:doi/10.1002/joa3.13131&rft_dat=%3Cproquest_doaj_%3E3117618325%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d3691-c47db652ff13ce0cb1932176ff9803c723d1ed08e9ce2b8652ef95c09e1fe6eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116543125&rft_id=info:pmid/39416247&rfr_iscdi=true