Loading…
High-Level Codewords Based on Granger Causality for Video Event Detection
Video event detection is a challenging problem in many applications, such as video surveillance and video content analysis. In this paper, we propose a new framework to perceive high-level codewords by analyzing temporal relationship between different channels of video features. The low-level vocabu...
Saved in:
Published in: | Advances in multimedia 2015-01, Vol.2015 (2015), p.1-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Video event detection is a challenging problem in many applications, such as video surveillance and video content analysis. In this paper, we propose a new framework to perceive high-level codewords by analyzing temporal relationship between different channels of video features. The low-level vocabulary words are firstly generated after different audio and visual feature extraction. A weighted undirected graph is constructed by exploring the Granger Causality between low-level words. Then, a greedy agglomerative graph-partitioning method is used to discover low-level word groups which have similar temporal pattern. The high-level codebooks representation is obtained by quantification of low-level words groups. Finally, multiple kernel learning, combined with our high-level codewords, is used to detect the video event. Extensive experimental results show that the proposed method achieves preferable results in video event detection. |
---|---|
ISSN: | 1687-5680 1687-5699 |
DOI: | 10.1155/2015/698316 |