Loading…

Hybrid Information Mixing Module for Stock Movement Prediction

With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variabl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Choi, Jooweon, Yoo, Shiyong, Zhou, Xiao, Kim, Youngbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variables; thus, market volatility should be considered for predicting stock price movement. Because stock markets are efficient, all kinds of information are quickly reflected in stock prices. We create a new fusion mix by combining price and text data features and propose a hybrid information mixing module designed using two map blocks for effective interaction between the two features. We extract the multimodal interaction between the time-series features of the price data and the semantic features of the text data. In this paper, a multilayer perceptron-based model, the hybrid information mixing module, is applied to the stock price movement prediction to conduct a price fluctuation prediction experiment in a stock market with high volatility. In addition, the accuracy, Matthews correlation coefficient (MCC) and F1 score for the stock price movement prediction were used to verify the performance of the hybrid information mixing module.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3258695