Loading…

sunRunner1D: A Tool for Exploring ICME Evolution through the Inner Heliosphere

Accurate forecasts of the properties of interplanetary coronal mass ejections (ICMEs) prior to their arrival at Earth are unquestionably a key goal for space weather. Currently, there are several promising techniques for accomplishing this, including the more focused but limited objective of predict...

Full description

Saved in:
Bibliographic Details
Published in:Universe (Basel) 2022-09, Vol.8 (9), p.447
Main Authors: Riley, Pete, Ben-Nun, Michal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate forecasts of the properties of interplanetary coronal mass ejections (ICMEs) prior to their arrival at Earth are unquestionably a key goal for space weather. Currently, there are several promising techniques for accomplishing this, including the more focused but limited objective of predicting the time of arrival (ToA) of the ICME at Earth. In this study, we describe a new tool, sunRunner1D, with the initial goal of being able to reproduce the structure and evolution of four categories of CMEs as they propagate from the corona to 1 AU. We demonstrate that sunRunner1D can reproduce the essential properties of these ICMEs to varying degrees of success. We suggest that, ultimately, this tool could assist operational forecasters in predicting space weather events, and their associated geomagnetic consequences. In the nearer term, we anticipate that it could potentially provide useful forecasts for ToA.
ISSN:2218-1997
2218-1997
DOI:10.3390/universe8090447