Loading…
Metal Recovery from Wastewater Using Electrodialysis Separation
Electrodialysis is classified as a membrane separation process in which ions are transferred through selective ion-exchange membranes from one solution to another using an electric field as the driving force. Electrodialysis is a mature technology in the field of brackish water desalination, but in...
Saved in:
Published in: | Metals (Basel ) 2024-01, Vol.14 (1), p.38 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrodialysis is classified as a membrane separation process in which ions are transferred through selective ion-exchange membranes from one solution to another using an electric field as the driving force. Electrodialysis is a mature technology in the field of brackish water desalination, but in recent decades the development of new membranes has made it possible to extend their application in the food, drug, and chemical process industries, including wastewater treatment. This work describes the state of the art in the use of electrodialysis (ED) for metal removal from water and wastewater. The fundamentals of the technique are introduced based on the working principle, operational features, and transport mechanisms of the membranes. An overview of the key factors (i.e., the membrane properties, the cell configuration, and the operational conditions) in the ED performance is presented. This review highlights the importance of studying the inter-relation of parameters affecting the transport mechanism to design and optimize metal recovery through ED. The conventional applications of ED for the desalination of brackish water and demineralization of industrial process water and wastewater are discussed to better understand the key role of this technology in the separation, concentration, and purification of aqueous effluents. The recovery and concentration of metals from industrial effluents are evaluated based on a review of the literature dealing with effluents from different sources. The most relevant results of these experimental studies highlight the key role of ED in the challenge of selective recovery of metals from aqueous effluents. This review addresses the potential application of ED not only for polluted water treatment but also as a promising tool for the recovery of critical metals to avoid natural resource depletion, promoting a circular economy. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met14010038 |