Loading…

Numerical simulation of smoke natural filling in ultra-thin and tall atrium

In this paper, the natural filling law of smoke in ultra-thin and tall atrium was studied by means of numerical simulations. The results show that, the axial plume velocity of the ultra-thin and tall atrium has a good exponential function dependence on the Q˙1/3z−1/3, and the axial plume temperature...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in thermal engineering 2021-12, Vol.28, p.101521, Article 101521
Main Authors: Wang, Jiuzhu, Du, Cuifeng, Zhang, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the natural filling law of smoke in ultra-thin and tall atrium was studied by means of numerical simulations. The results show that, the axial plume velocity of the ultra-thin and tall atrium has a good exponential function dependence on the Q˙1/3z−1/3, and the axial plume temperature rise has a good power function dependence on the Q˙2/3z−5/3. When the cross-sectional shape is circle, the plume moves faster, while the cross-sectional shape has little effect on the axial plume temperature rise far from the fire source. Area-height-squared ratio (A/H2) has a little influence on the axial plume velocity in the atrium for A/H2 30 m.
ISSN:2214-157X
2214-157X
DOI:10.1016/j.csite.2021.101521