Loading…
Altered inhibition and excitation in neocortical circuits in congenital microcephaly
Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated prote...
Saved in:
Published in: | Neurobiology of disease 2019-09, Vol.129, p.130-143 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73 |
container_end_page | 143 |
container_issue | |
container_start_page | 130 |
container_title | Neurobiology of disease |
container_volume | 129 |
creator | Zaqout, Sami Blaesius, Kathrin Wu, Yuan-Ju Ott, Stefanie Kraemer, Nadine Becker, Lena-Luise Rosário, Marta Rosenmund, Christian Strauss, Ulf Kaindl, Angela M. |
description | Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similar to the human condition result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons. Cdk5rap2-deficient murine neurons show poorly branched dendritic arbors and an increased density of immature thin spines and glutamatergic synapses in vivo. Moreover, the excitatory drive is enhanced in ex vivo brain slice preparations of Cdk5rap2 mutant mice. Concurrently, we show that pyramidal neurons receive fewer inhibitory inputs. Together, these findings point towards a shift in the excitation – inhibition balance towards excitation in Cdk5rap2 mutant mice. Thus, MCPH3 is associated not only with a neural progenitor proliferation defect but also with altered function of postmitotic neurons and hence with altered connectivity.
•Neuropsychiatric dysfunctions in MCPH are not explained by smaller brain alone.•an/an mice display reduced dendritic arborization in layer 2/3 neocortical pyramidal neurons.•layer 2/3 neurons of an/an mice receive increased excitation but decreased inhibition.•Excitation/inhibition imbalance is due changed proportions of excitatory/inhibitory synapses. |
doi_str_mv | 10.1016/j.nbd.2019.05.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d93807af9cd24d4c88905df5b032fea0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969996119301226</els_id><doaj_id>oai_doaj_org_article_d93807af9cd24d4c88905df5b032fea0</doaj_id><sourcerecordid>2231859481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73</originalsourceid><addsrcrecordid>eNp9kctOHDEQRa0oKEwgH5BN1MtsplN2t1_KCqE8kJCyAYmd5bbL4FGPPbF7Ivj7eBjCMquSS7dO1fUl5COFngIVXzZ9mnzPgOoeeA-g3pAVBc3Xmg93b8kKtNBrrQU9Je9r3QBQyrV8R04HSoFJIVfk5mJesKDvYnqIU1xiTp1NvsNHFxf7_IypS5hdLkt0du5cLG4fl3rou5zuMTXh3G2jK9nh7sHOT-fkJNi54oeXekZuv3-7ufy5vv714-ry4nrtRsGWdiVoxbxUXkihQQSYBj9h4NLLYQQegkQcLUoWwIMdJhylg4BKOA8-yOGMXB25PtuN2ZW4teXJZBvNcyOXe2MPV89ovB4USBu082z0o1NKA_eBTzCwgBYa6_ORtSv59x7rYraxOpxn28zvq2FsoIrrUdEmpUdpc1xrwfC6moI5BGM2pgVjDsEY4KYF02Y-veD30xb968S_JJrg61GA7cP-RCymuojJoY8F3dIcxf_g_wKauZ90</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231859481</pqid></control><display><type>article</type><title>Altered inhibition and excitation in neocortical circuits in congenital microcephaly</title><source>ScienceDirect Pay Per View(PPV) Titles</source><creator>Zaqout, Sami ; Blaesius, Kathrin ; Wu, Yuan-Ju ; Ott, Stefanie ; Kraemer, Nadine ; Becker, Lena-Luise ; Rosário, Marta ; Rosenmund, Christian ; Strauss, Ulf ; Kaindl, Angela M.</creator><creatorcontrib>Zaqout, Sami ; Blaesius, Kathrin ; Wu, Yuan-Ju ; Ott, Stefanie ; Kraemer, Nadine ; Becker, Lena-Luise ; Rosário, Marta ; Rosenmund, Christian ; Strauss, Ulf ; Kaindl, Angela M.</creatorcontrib><description>Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similar to the human condition result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons. Cdk5rap2-deficient murine neurons show poorly branched dendritic arbors and an increased density of immature thin spines and glutamatergic synapses in vivo. Moreover, the excitatory drive is enhanced in ex vivo brain slice preparations of Cdk5rap2 mutant mice. Concurrently, we show that pyramidal neurons receive fewer inhibitory inputs. Together, these findings point towards a shift in the excitation – inhibition balance towards excitation in Cdk5rap2 mutant mice. Thus, MCPH3 is associated not only with a neural progenitor proliferation defect but also with altered function of postmitotic neurons and hence with altered connectivity.
•Neuropsychiatric dysfunctions in MCPH are not explained by smaller brain alone.•an/an mice display reduced dendritic arborization in layer 2/3 neocortical pyramidal neurons.•layer 2/3 neurons of an/an mice receive increased excitation but decreased inhibition.•Excitation/inhibition imbalance is due changed proportions of excitatory/inhibitory synapses.</description><identifier>ISSN: 0969-9961</identifier><identifier>EISSN: 1095-953X</identifier><identifier>DOI: 10.1016/j.nbd.2019.05.008</identifier><identifier>PMID: 31102767</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cdk5rap2 ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Differentiation - physiology ; Dendritic morphogenesis ; Mice ; Mice, Mutant Strains ; Microcephaly ; Microcephaly - genetics ; Microcephaly - metabolism ; Microcephaly - physiopathology ; Mutation ; Neocortex - metabolism ; Neocortex - physiopathology ; Neural Pathways - metabolism ; Neural Pathways - physiopathology ; Neurogenesis - physiology ; Neuronal differentiation ; Pyramidal Cells - metabolism ; Pyramidal Cells - pathology ; Synaptic transmission ; Synaptic Transmission - physiology</subject><ispartof>Neurobiology of disease, 2019-09, Vol.129, p.130-143</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73</citedby><cites>FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73</cites><orcidid>0000-0002-3298-4425 ; 0000-0001-9454-206X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969996119301226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45759</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31102767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaqout, Sami</creatorcontrib><creatorcontrib>Blaesius, Kathrin</creatorcontrib><creatorcontrib>Wu, Yuan-Ju</creatorcontrib><creatorcontrib>Ott, Stefanie</creatorcontrib><creatorcontrib>Kraemer, Nadine</creatorcontrib><creatorcontrib>Becker, Lena-Luise</creatorcontrib><creatorcontrib>Rosário, Marta</creatorcontrib><creatorcontrib>Rosenmund, Christian</creatorcontrib><creatorcontrib>Strauss, Ulf</creatorcontrib><creatorcontrib>Kaindl, Angela M.</creatorcontrib><title>Altered inhibition and excitation in neocortical circuits in congenital microcephaly</title><title>Neurobiology of disease</title><addtitle>Neurobiol Dis</addtitle><description>Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similar to the human condition result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons. Cdk5rap2-deficient murine neurons show poorly branched dendritic arbors and an increased density of immature thin spines and glutamatergic synapses in vivo. Moreover, the excitatory drive is enhanced in ex vivo brain slice preparations of Cdk5rap2 mutant mice. Concurrently, we show that pyramidal neurons receive fewer inhibitory inputs. Together, these findings point towards a shift in the excitation – inhibition balance towards excitation in Cdk5rap2 mutant mice. Thus, MCPH3 is associated not only with a neural progenitor proliferation defect but also with altered function of postmitotic neurons and hence with altered connectivity.
•Neuropsychiatric dysfunctions in MCPH are not explained by smaller brain alone.•an/an mice display reduced dendritic arborization in layer 2/3 neocortical pyramidal neurons.•layer 2/3 neurons of an/an mice receive increased excitation but decreased inhibition.•Excitation/inhibition imbalance is due changed proportions of excitatory/inhibitory synapses.</description><subject>Animals</subject><subject>Cdk5rap2</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Dendritic morphogenesis</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Microcephaly</subject><subject>Microcephaly - genetics</subject><subject>Microcephaly - metabolism</subject><subject>Microcephaly - physiopathology</subject><subject>Mutation</subject><subject>Neocortex - metabolism</subject><subject>Neocortex - physiopathology</subject><subject>Neural Pathways - metabolism</subject><subject>Neural Pathways - physiopathology</subject><subject>Neurogenesis - physiology</subject><subject>Neuronal differentiation</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - pathology</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><issn>0969-9961</issn><issn>1095-953X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctOHDEQRa0oKEwgH5BN1MtsplN2t1_KCqE8kJCyAYmd5bbL4FGPPbF7Ivj7eBjCMquSS7dO1fUl5COFngIVXzZ9mnzPgOoeeA-g3pAVBc3Xmg93b8kKtNBrrQU9Je9r3QBQyrV8R04HSoFJIVfk5mJesKDvYnqIU1xiTp1NvsNHFxf7_IypS5hdLkt0du5cLG4fl3rou5zuMTXh3G2jK9nh7sHOT-fkJNi54oeXekZuv3-7ufy5vv714-ry4nrtRsGWdiVoxbxUXkihQQSYBj9h4NLLYQQegkQcLUoWwIMdJhylg4BKOA8-yOGMXB25PtuN2ZW4teXJZBvNcyOXe2MPV89ovB4USBu082z0o1NKA_eBTzCwgBYa6_ORtSv59x7rYraxOpxn28zvq2FsoIrrUdEmpUdpc1xrwfC6moI5BGM2pgVjDsEY4KYF02Y-veD30xb968S_JJrg61GA7cP-RCymuojJoY8F3dIcxf_g_wKauZ90</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Zaqout, Sami</creator><creator>Blaesius, Kathrin</creator><creator>Wu, Yuan-Ju</creator><creator>Ott, Stefanie</creator><creator>Kraemer, Nadine</creator><creator>Becker, Lena-Luise</creator><creator>Rosário, Marta</creator><creator>Rosenmund, Christian</creator><creator>Strauss, Ulf</creator><creator>Kaindl, Angela M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3298-4425</orcidid><orcidid>https://orcid.org/0000-0001-9454-206X</orcidid></search><sort><creationdate>201909</creationdate><title>Altered inhibition and excitation in neocortical circuits in congenital microcephaly</title><author>Zaqout, Sami ; Blaesius, Kathrin ; Wu, Yuan-Ju ; Ott, Stefanie ; Kraemer, Nadine ; Becker, Lena-Luise ; Rosário, Marta ; Rosenmund, Christian ; Strauss, Ulf ; Kaindl, Angela M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cdk5rap2</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Dendritic morphogenesis</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Microcephaly</topic><topic>Microcephaly - genetics</topic><topic>Microcephaly - metabolism</topic><topic>Microcephaly - physiopathology</topic><topic>Mutation</topic><topic>Neocortex - metabolism</topic><topic>Neocortex - physiopathology</topic><topic>Neural Pathways - metabolism</topic><topic>Neural Pathways - physiopathology</topic><topic>Neurogenesis - physiology</topic><topic>Neuronal differentiation</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - pathology</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaqout, Sami</creatorcontrib><creatorcontrib>Blaesius, Kathrin</creatorcontrib><creatorcontrib>Wu, Yuan-Ju</creatorcontrib><creatorcontrib>Ott, Stefanie</creatorcontrib><creatorcontrib>Kraemer, Nadine</creatorcontrib><creatorcontrib>Becker, Lena-Luise</creatorcontrib><creatorcontrib>Rosário, Marta</creatorcontrib><creatorcontrib>Rosenmund, Christian</creatorcontrib><creatorcontrib>Strauss, Ulf</creatorcontrib><creatorcontrib>Kaindl, Angela M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Neurobiology of disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaqout, Sami</au><au>Blaesius, Kathrin</au><au>Wu, Yuan-Ju</au><au>Ott, Stefanie</au><au>Kraemer, Nadine</au><au>Becker, Lena-Luise</au><au>Rosário, Marta</au><au>Rosenmund, Christian</au><au>Strauss, Ulf</au><au>Kaindl, Angela M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered inhibition and excitation in neocortical circuits in congenital microcephaly</atitle><jtitle>Neurobiology of disease</jtitle><addtitle>Neurobiol Dis</addtitle><date>2019-09</date><risdate>2019</risdate><volume>129</volume><spage>130</spage><epage>143</epage><pages>130-143</pages><issn>0969-9961</issn><eissn>1095-953X</eissn><abstract>Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similar to the human condition result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons. Cdk5rap2-deficient murine neurons show poorly branched dendritic arbors and an increased density of immature thin spines and glutamatergic synapses in vivo. Moreover, the excitatory drive is enhanced in ex vivo brain slice preparations of Cdk5rap2 mutant mice. Concurrently, we show that pyramidal neurons receive fewer inhibitory inputs. Together, these findings point towards a shift in the excitation – inhibition balance towards excitation in Cdk5rap2 mutant mice. Thus, MCPH3 is associated not only with a neural progenitor proliferation defect but also with altered function of postmitotic neurons and hence with altered connectivity.
•Neuropsychiatric dysfunctions in MCPH are not explained by smaller brain alone.•an/an mice display reduced dendritic arborization in layer 2/3 neocortical pyramidal neurons.•layer 2/3 neurons of an/an mice receive increased excitation but decreased inhibition.•Excitation/inhibition imbalance is due changed proportions of excitatory/inhibitory synapses.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31102767</pmid><doi>10.1016/j.nbd.2019.05.008</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3298-4425</orcidid><orcidid>https://orcid.org/0000-0001-9454-206X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-9961 |
ispartof | Neurobiology of disease, 2019-09, Vol.129, p.130-143 |
issn | 0969-9961 1095-953X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d93807af9cd24d4c88905df5b032fea0 |
source | ScienceDirect Pay Per View(PPV) Titles |
subjects | Animals Cdk5rap2 Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Differentiation - physiology Dendritic morphogenesis Mice Mice, Mutant Strains Microcephaly Microcephaly - genetics Microcephaly - metabolism Microcephaly - physiopathology Mutation Neocortex - metabolism Neocortex - physiopathology Neural Pathways - metabolism Neural Pathways - physiopathology Neurogenesis - physiology Neuronal differentiation Pyramidal Cells - metabolism Pyramidal Cells - pathology Synaptic transmission Synaptic Transmission - physiology |
title | Altered inhibition and excitation in neocortical circuits in congenital microcephaly |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20inhibition%20and%20excitation%20in%20neocortical%20circuits%20in%20congenital%20microcephaly&rft.jtitle=Neurobiology%20of%20disease&rft.au=Zaqout,%20Sami&rft.date=2019-09&rft.volume=129&rft.spage=130&rft.epage=143&rft.pages=130-143&rft.issn=0969-9961&rft.eissn=1095-953X&rft_id=info:doi/10.1016/j.nbd.2019.05.008&rft_dat=%3Cproquest_doaj_%3E2231859481%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231859481&rft_id=info:pmid/31102767&rfr_iscdi=true |