Loading…

Altered inhibition and excitation in neocortical circuits in congenital microcephaly

Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated prote...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of disease 2019-09, Vol.129, p.130-143
Main Authors: Zaqout, Sami, Blaesius, Kathrin, Wu, Yuan-Ju, Ott, Stefanie, Kraemer, Nadine, Becker, Lena-Luise, Rosário, Marta, Rosenmund, Christian, Strauss, Ulf, Kaindl, Angela M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73
cites cdi_FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73
container_end_page 143
container_issue
container_start_page 130
container_title Neurobiology of disease
container_volume 129
creator Zaqout, Sami
Blaesius, Kathrin
Wu, Yuan-Ju
Ott, Stefanie
Kraemer, Nadine
Becker, Lena-Luise
Rosário, Marta
Rosenmund, Christian
Strauss, Ulf
Kaindl, Angela M.
description Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similar to the human condition result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons. Cdk5rap2-deficient murine neurons show poorly branched dendritic arbors and an increased density of immature thin spines and glutamatergic synapses in vivo. Moreover, the excitatory drive is enhanced in ex vivo brain slice preparations of Cdk5rap2 mutant mice. Concurrently, we show that pyramidal neurons receive fewer inhibitory inputs. Together, these findings point towards a shift in the excitation – inhibition balance towards excitation in Cdk5rap2 mutant mice. Thus, MCPH3 is associated not only with a neural progenitor proliferation defect but also with altered function of postmitotic neurons and hence with altered connectivity. •Neuropsychiatric dysfunctions in MCPH are not explained by smaller brain alone.•an/an mice display reduced dendritic arborization in layer 2/3 neocortical pyramidal neurons.•layer 2/3 neurons of an/an mice receive increased excitation but decreased inhibition.•Excitation/inhibition imbalance is due changed proportions of excitatory/inhibitory synapses.
doi_str_mv 10.1016/j.nbd.2019.05.008
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d93807af9cd24d4c88905df5b032fea0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969996119301226</els_id><doaj_id>oai_doaj_org_article_d93807af9cd24d4c88905df5b032fea0</doaj_id><sourcerecordid>2231859481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73</originalsourceid><addsrcrecordid>eNp9kctOHDEQRa0oKEwgH5BN1MtsplN2t1_KCqE8kJCyAYmd5bbL4FGPPbF7Ivj7eBjCMquSS7dO1fUl5COFngIVXzZ9mnzPgOoeeA-g3pAVBc3Xmg93b8kKtNBrrQU9Je9r3QBQyrV8R04HSoFJIVfk5mJesKDvYnqIU1xiTp1NvsNHFxf7_IypS5hdLkt0du5cLG4fl3rou5zuMTXh3G2jK9nh7sHOT-fkJNi54oeXekZuv3-7ufy5vv714-ry4nrtRsGWdiVoxbxUXkihQQSYBj9h4NLLYQQegkQcLUoWwIMdJhylg4BKOA8-yOGMXB25PtuN2ZW4teXJZBvNcyOXe2MPV89ovB4USBu082z0o1NKA_eBTzCwgBYa6_ORtSv59x7rYraxOpxn28zvq2FsoIrrUdEmpUdpc1xrwfC6moI5BGM2pgVjDsEY4KYF02Y-veD30xb968S_JJrg61GA7cP-RCymuojJoY8F3dIcxf_g_wKauZ90</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231859481</pqid></control><display><type>article</type><title>Altered inhibition and excitation in neocortical circuits in congenital microcephaly</title><source>ScienceDirect Pay Per View(PPV) Titles</source><creator>Zaqout, Sami ; Blaesius, Kathrin ; Wu, Yuan-Ju ; Ott, Stefanie ; Kraemer, Nadine ; Becker, Lena-Luise ; Rosário, Marta ; Rosenmund, Christian ; Strauss, Ulf ; Kaindl, Angela M.</creator><creatorcontrib>Zaqout, Sami ; Blaesius, Kathrin ; Wu, Yuan-Ju ; Ott, Stefanie ; Kraemer, Nadine ; Becker, Lena-Luise ; Rosário, Marta ; Rosenmund, Christian ; Strauss, Ulf ; Kaindl, Angela M.</creatorcontrib><description>Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similar to the human condition result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons. Cdk5rap2-deficient murine neurons show poorly branched dendritic arbors and an increased density of immature thin spines and glutamatergic synapses in vivo. Moreover, the excitatory drive is enhanced in ex vivo brain slice preparations of Cdk5rap2 mutant mice. Concurrently, we show that pyramidal neurons receive fewer inhibitory inputs. Together, these findings point towards a shift in the excitation – inhibition balance towards excitation in Cdk5rap2 mutant mice. Thus, MCPH3 is associated not only with a neural progenitor proliferation defect but also with altered function of postmitotic neurons and hence with altered connectivity. •Neuropsychiatric dysfunctions in MCPH are not explained by smaller brain alone.•an/an mice display reduced dendritic arborization in layer 2/3 neocortical pyramidal neurons.•layer 2/3 neurons of an/an mice receive increased excitation but decreased inhibition.•Excitation/inhibition imbalance is due changed proportions of excitatory/inhibitory synapses.</description><identifier>ISSN: 0969-9961</identifier><identifier>EISSN: 1095-953X</identifier><identifier>DOI: 10.1016/j.nbd.2019.05.008</identifier><identifier>PMID: 31102767</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cdk5rap2 ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Differentiation - physiology ; Dendritic morphogenesis ; Mice ; Mice, Mutant Strains ; Microcephaly ; Microcephaly - genetics ; Microcephaly - metabolism ; Microcephaly - physiopathology ; Mutation ; Neocortex - metabolism ; Neocortex - physiopathology ; Neural Pathways - metabolism ; Neural Pathways - physiopathology ; Neurogenesis - physiology ; Neuronal differentiation ; Pyramidal Cells - metabolism ; Pyramidal Cells - pathology ; Synaptic transmission ; Synaptic Transmission - physiology</subject><ispartof>Neurobiology of disease, 2019-09, Vol.129, p.130-143</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73</citedby><cites>FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73</cites><orcidid>0000-0002-3298-4425 ; 0000-0001-9454-206X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969996119301226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45759</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31102767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaqout, Sami</creatorcontrib><creatorcontrib>Blaesius, Kathrin</creatorcontrib><creatorcontrib>Wu, Yuan-Ju</creatorcontrib><creatorcontrib>Ott, Stefanie</creatorcontrib><creatorcontrib>Kraemer, Nadine</creatorcontrib><creatorcontrib>Becker, Lena-Luise</creatorcontrib><creatorcontrib>Rosário, Marta</creatorcontrib><creatorcontrib>Rosenmund, Christian</creatorcontrib><creatorcontrib>Strauss, Ulf</creatorcontrib><creatorcontrib>Kaindl, Angela M.</creatorcontrib><title>Altered inhibition and excitation in neocortical circuits in congenital microcephaly</title><title>Neurobiology of disease</title><addtitle>Neurobiol Dis</addtitle><description>Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similar to the human condition result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons. Cdk5rap2-deficient murine neurons show poorly branched dendritic arbors and an increased density of immature thin spines and glutamatergic synapses in vivo. Moreover, the excitatory drive is enhanced in ex vivo brain slice preparations of Cdk5rap2 mutant mice. Concurrently, we show that pyramidal neurons receive fewer inhibitory inputs. Together, these findings point towards a shift in the excitation – inhibition balance towards excitation in Cdk5rap2 mutant mice. Thus, MCPH3 is associated not only with a neural progenitor proliferation defect but also with altered function of postmitotic neurons and hence with altered connectivity. •Neuropsychiatric dysfunctions in MCPH are not explained by smaller brain alone.•an/an mice display reduced dendritic arborization in layer 2/3 neocortical pyramidal neurons.•layer 2/3 neurons of an/an mice receive increased excitation but decreased inhibition.•Excitation/inhibition imbalance is due changed proportions of excitatory/inhibitory synapses.</description><subject>Animals</subject><subject>Cdk5rap2</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Dendritic morphogenesis</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Microcephaly</subject><subject>Microcephaly - genetics</subject><subject>Microcephaly - metabolism</subject><subject>Microcephaly - physiopathology</subject><subject>Mutation</subject><subject>Neocortex - metabolism</subject><subject>Neocortex - physiopathology</subject><subject>Neural Pathways - metabolism</subject><subject>Neural Pathways - physiopathology</subject><subject>Neurogenesis - physiology</subject><subject>Neuronal differentiation</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - pathology</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><issn>0969-9961</issn><issn>1095-953X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctOHDEQRa0oKEwgH5BN1MtsplN2t1_KCqE8kJCyAYmd5bbL4FGPPbF7Ivj7eBjCMquSS7dO1fUl5COFngIVXzZ9mnzPgOoeeA-g3pAVBc3Xmg93b8kKtNBrrQU9Je9r3QBQyrV8R04HSoFJIVfk5mJesKDvYnqIU1xiTp1NvsNHFxf7_IypS5hdLkt0du5cLG4fl3rou5zuMTXh3G2jK9nh7sHOT-fkJNi54oeXekZuv3-7ufy5vv714-ry4nrtRsGWdiVoxbxUXkihQQSYBj9h4NLLYQQegkQcLUoWwIMdJhylg4BKOA8-yOGMXB25PtuN2ZW4teXJZBvNcyOXe2MPV89ovB4USBu082z0o1NKA_eBTzCwgBYa6_ORtSv59x7rYraxOpxn28zvq2FsoIrrUdEmpUdpc1xrwfC6moI5BGM2pgVjDsEY4KYF02Y-veD30xb968S_JJrg61GA7cP-RCymuojJoY8F3dIcxf_g_wKauZ90</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Zaqout, Sami</creator><creator>Blaesius, Kathrin</creator><creator>Wu, Yuan-Ju</creator><creator>Ott, Stefanie</creator><creator>Kraemer, Nadine</creator><creator>Becker, Lena-Luise</creator><creator>Rosário, Marta</creator><creator>Rosenmund, Christian</creator><creator>Strauss, Ulf</creator><creator>Kaindl, Angela M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3298-4425</orcidid><orcidid>https://orcid.org/0000-0001-9454-206X</orcidid></search><sort><creationdate>201909</creationdate><title>Altered inhibition and excitation in neocortical circuits in congenital microcephaly</title><author>Zaqout, Sami ; Blaesius, Kathrin ; Wu, Yuan-Ju ; Ott, Stefanie ; Kraemer, Nadine ; Becker, Lena-Luise ; Rosário, Marta ; Rosenmund, Christian ; Strauss, Ulf ; Kaindl, Angela M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cdk5rap2</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Dendritic morphogenesis</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Microcephaly</topic><topic>Microcephaly - genetics</topic><topic>Microcephaly - metabolism</topic><topic>Microcephaly - physiopathology</topic><topic>Mutation</topic><topic>Neocortex - metabolism</topic><topic>Neocortex - physiopathology</topic><topic>Neural Pathways - metabolism</topic><topic>Neural Pathways - physiopathology</topic><topic>Neurogenesis - physiology</topic><topic>Neuronal differentiation</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - pathology</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaqout, Sami</creatorcontrib><creatorcontrib>Blaesius, Kathrin</creatorcontrib><creatorcontrib>Wu, Yuan-Ju</creatorcontrib><creatorcontrib>Ott, Stefanie</creatorcontrib><creatorcontrib>Kraemer, Nadine</creatorcontrib><creatorcontrib>Becker, Lena-Luise</creatorcontrib><creatorcontrib>Rosário, Marta</creatorcontrib><creatorcontrib>Rosenmund, Christian</creatorcontrib><creatorcontrib>Strauss, Ulf</creatorcontrib><creatorcontrib>Kaindl, Angela M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Neurobiology of disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaqout, Sami</au><au>Blaesius, Kathrin</au><au>Wu, Yuan-Ju</au><au>Ott, Stefanie</au><au>Kraemer, Nadine</au><au>Becker, Lena-Luise</au><au>Rosário, Marta</au><au>Rosenmund, Christian</au><au>Strauss, Ulf</au><au>Kaindl, Angela M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altered inhibition and excitation in neocortical circuits in congenital microcephaly</atitle><jtitle>Neurobiology of disease</jtitle><addtitle>Neurobiol Dis</addtitle><date>2019-09</date><risdate>2019</risdate><volume>129</volume><spage>130</spage><epage>143</epage><pages>130-143</pages><issn>0969-9961</issn><eissn>1095-953X</eissn><abstract>Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similar to the human condition result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons. Cdk5rap2-deficient murine neurons show poorly branched dendritic arbors and an increased density of immature thin spines and glutamatergic synapses in vivo. Moreover, the excitatory drive is enhanced in ex vivo brain slice preparations of Cdk5rap2 mutant mice. Concurrently, we show that pyramidal neurons receive fewer inhibitory inputs. Together, these findings point towards a shift in the excitation – inhibition balance towards excitation in Cdk5rap2 mutant mice. Thus, MCPH3 is associated not only with a neural progenitor proliferation defect but also with altered function of postmitotic neurons and hence with altered connectivity. •Neuropsychiatric dysfunctions in MCPH are not explained by smaller brain alone.•an/an mice display reduced dendritic arborization in layer 2/3 neocortical pyramidal neurons.•layer 2/3 neurons of an/an mice receive increased excitation but decreased inhibition.•Excitation/inhibition imbalance is due changed proportions of excitatory/inhibitory synapses.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31102767</pmid><doi>10.1016/j.nbd.2019.05.008</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3298-4425</orcidid><orcidid>https://orcid.org/0000-0001-9454-206X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-9961
ispartof Neurobiology of disease, 2019-09, Vol.129, p.130-143
issn 0969-9961
1095-953X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d93807af9cd24d4c88905df5b032fea0
source ScienceDirect Pay Per View(PPV) Titles
subjects Animals
Cdk5rap2
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Differentiation - physiology
Dendritic morphogenesis
Mice
Mice, Mutant Strains
Microcephaly
Microcephaly - genetics
Microcephaly - metabolism
Microcephaly - physiopathology
Mutation
Neocortex - metabolism
Neocortex - physiopathology
Neural Pathways - metabolism
Neural Pathways - physiopathology
Neurogenesis - physiology
Neuronal differentiation
Pyramidal Cells - metabolism
Pyramidal Cells - pathology
Synaptic transmission
Synaptic Transmission - physiology
title Altered inhibition and excitation in neocortical circuits in congenital microcephaly
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altered%20inhibition%20and%20excitation%20in%20neocortical%20circuits%20in%20congenital%20microcephaly&rft.jtitle=Neurobiology%20of%20disease&rft.au=Zaqout,%20Sami&rft.date=2019-09&rft.volume=129&rft.spage=130&rft.epage=143&rft.pages=130-143&rft.issn=0969-9961&rft.eissn=1095-953X&rft_id=info:doi/10.1016/j.nbd.2019.05.008&rft_dat=%3Cproquest_doaj_%3E2231859481%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-950982d78d676906f0b3dbef57d73405ff7ee4ae72f0d0a3be47c0fe86cd0df73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2231859481&rft_id=info:pmid/31102767&rfr_iscdi=true