Loading…

A review of pollution-based real-time modelling and control for sewage systems

Conventional solutions for wastewater collection focus on reducing overflow events in the sewage network, which can be achieved by adapting sewer infrastructure or, a more cost-effective alternative, by implementing a non-engineering management solution. The state-of-the-art solution is centered on...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2024-06, Vol.10 (11), p.e31831, Article e31831
Main Authors: da Silva Gesser, Rodrigo, Voos, Holger, Cornelissen, Alex, Schutz, Georges
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conventional solutions for wastewater collection focus on reducing overflow events in the sewage network, which can be achieved by adapting sewer infrastructure or, a more cost-effective alternative, by implementing a non-engineering management solution. The state-of-the-art solution is centered on Real-Time Control (RTC), which is already resulting in a positive impact on the environment by decreasing the volume of wastewater being discharged into receiving waters. Researchers have been continuing efforts towards upgrading RTC solutions for sewage systems and a new approach, although rudimentary, was introduced in 1997, known as Pollution-based RTC (P-RTC), which added water quality (concentration or load) information explicitly within the RTC algorithm. Formally, P-RTC is encompassed of several control methodologies using a measurement or estimation of the concentration (i.e. COD or ammonia) of the sewage throughout the network. The use of P-RTC can result in a better control performance with a reduction in concentration of overflowing wastewater observed associated with an increase of concentration of sewage arriving at the Wastewater Treatment Plant (WWTP). The literature revealed that P-RTC can be differentiated by: (1) implementation method; (2) how water quality is incorporated, and (3) overall control objectives. Additionally, this paper evaluates the hydrological models used for P-RTC. The objective of this paper is to compile relevant research in pollution-based modelling and real-time control of sewage systems, explaining the general concepts within each P-RTC category and their differences.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e31831