Loading…
The Physics behind the Modulation of Thermionic Current in Photodetectors Based on Graphene Embedded between Amorphous and Crystalline Silicon
In this work, we investigate a vertically illuminated near-infrared photodetector based on a graphene layer physically embedded between a crystalline and a hydrogenated silicon layer. Under near-infrared illumination, our devices show an unforeseen increase in the thermionic current. This effect has...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-02, Vol.13 (5), p.872 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we investigate a vertically illuminated near-infrared photodetector based on a graphene layer physically embedded between a crystalline and a hydrogenated silicon layer. Under near-infrared illumination, our devices show an unforeseen increase in the thermionic current. This effect has been ascribed to the lowering of the graphene/crystalline silicon Schottky barrier as the result of an upward shift in the graphene Fermi level induced by the charge carriers released from traps localized at the graphene/amorphous silicon interface under illumination. A complex model reproducing the experimental observations has been presented and discussed. Responsivity of our devices exhibits a maximum value of 27 mA/W at 1543 nm under an optical power of 8.7 μW, which could be further improved at lower optical power. Our findings offer new insights, highlighting at the same time a new detection mechanism which could be exploited for developing near-infrared silicon photodetectors suitable for power monitoring applications. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano13050872 |