Loading…
Using local gene expression similarities to discover regulatory binding site modules
We present an approach designed to identify gene regulation patterns using sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the combinations of transcription factor binding sites (also referred to as binding site modules) identified in gene promoters to...
Saved in:
Published in: | BMC bioinformatics 2006-11, Vol.7 (1), p.505-505, Article 505 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423 |
---|---|
cites | cdi_FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423 |
container_end_page | 505 |
container_issue | 1 |
container_start_page | 505 |
container_title | BMC bioinformatics |
container_volume | 7 |
creator | Wilczyński, Bartek Hvidsten, Torgeir R Kryshtafovych, Andriy Tiuryn, Jerzy Komorowski, Jan Fidelis, Krzysztof |
description | We present an approach designed to identify gene regulation patterns using sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the combinations of transcription factor binding sites (also referred to as binding site modules) identified in gene promoters to the expression of these genes. The novel aspects include local expression similarity clustering and an exact IF-THEN rule inference algorithm. We also provide a method of rule generalization to include genes with unknown expression profiles.
We have implemented the proposed framework and tested it on publicly available datasets from yeast S. cerevisae. The testing procedure consists of thorough statistical analyses of the groups of genes matching the rules we infer from expression data against known sets of co-regulated genes. For this purpose we have used published ChIP-Chip data and Gene Ontology annotations. In order to make these tests more objective we compare our results with recently published similar studies.
Results we obtain show that local expression similarity clustering greatly enhances overall quality of the derived rules, both in terms of enrichment of Gene Ontology functional annotation and coherence with ChIP-Chip binding data. Our approach thus provides reliable hypotheses on co-regulation that can be experimentally verified. An important feature of the method is its reliance only on widely accessible sequence and expression data. The same procedure can be easily applied to other microbial organisms. |
doi_str_mv | 10.1186/1471-2105-7-505 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d99641ac051f483ea776fa0d901dea96</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d99641ac051f483ea776fa0d901dea96</doaj_id><sourcerecordid>68182017</sourcerecordid><originalsourceid>FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423</originalsourceid><addsrcrecordid>eNqFks1v1DAQxS0EomXhzA3lxAWF2rHjjwtSKV-VKnFpuVqOPQmunHixk0L_e7zNqnQlEKexPG9-evYbhF4S_JYQyU8IE6RuCG5rUbe4fYSO728ePzgfoWc5X2NMhMTtU3REBMFKcHaMLq-yn4YqRGtCNcAEFfzaJsjZx6nKfvTBJD97yNUcK-ezjTeQqgTDEswc023V-cntCNnPUI3RLQHyc_SkNyHDi33doKtPHy_PvtQXXz-fn51e1B1naq5JX4qkvANsqGXWKNJy0UpgmBV7zEhKemXLIzrRONcT5tq2o9JSDAKzhm7Q-cp10VzrbfKjSbc6Gq_vLmIatEmztwG0U4ozYixuSc8kBSME7w12ChMHRvHCerOy8k_YLt0B7YP_dnpHWxZNMC_zG_RuVRfpCM7CNCcTDoYOO5P_rod4o5sSAsWsAN6vgM7HfwAOOzaOepen3uWphS5pF8jrvYsUfyyQZz2WhCAEM0FcsuaSyKaE_l9hgylVVKgiPFmFNsWcE_T3jgjWu437i4dXD3_ij36_YvQ30LvSdw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20339379</pqid></control><display><type>article</type><title>Using local gene expression similarities to discover regulatory binding site modules</title><source>PubMed Central</source><creator>Wilczyński, Bartek ; Hvidsten, Torgeir R ; Kryshtafovych, Andriy ; Tiuryn, Jerzy ; Komorowski, Jan ; Fidelis, Krzysztof</creator><creatorcontrib>Wilczyński, Bartek ; Hvidsten, Torgeir R ; Kryshtafovych, Andriy ; Tiuryn, Jerzy ; Komorowski, Jan ; Fidelis, Krzysztof</creatorcontrib><description>We present an approach designed to identify gene regulation patterns using sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the combinations of transcription factor binding sites (also referred to as binding site modules) identified in gene promoters to the expression of these genes. The novel aspects include local expression similarity clustering and an exact IF-THEN rule inference algorithm. We also provide a method of rule generalization to include genes with unknown expression profiles.
We have implemented the proposed framework and tested it on publicly available datasets from yeast S. cerevisae. The testing procedure consists of thorough statistical analyses of the groups of genes matching the rules we infer from expression data against known sets of co-regulated genes. For this purpose we have used published ChIP-Chip data and Gene Ontology annotations. In order to make these tests more objective we compare our results with recently published similar studies.
Results we obtain show that local expression similarity clustering greatly enhances overall quality of the derived rules, both in terms of enrichment of Gene Ontology functional annotation and coherence with ChIP-Chip binding data. Our approach thus provides reliable hypotheses on co-regulation that can be experimentally verified. An important feature of the method is its reliance only on widely accessible sequence and expression data. The same procedure can be easily applied to other microbial organisms.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-7-505</identifier><identifier>PMID: 17109764</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Binding Sites ; Biologi ; Biology ; Cell Cycle ; Chromatin Immunoprecipitation ; Cluster Analysis ; Computational Biology - methods ; Fungal Proteins - chemistry ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Methodology ; Multigene Family ; NATURAL SCIENCES ; NATURVETENSKAP ; Oligonucleotide Array Sequence Analysis ; Saccharomyces ; Saccharomyces cerevisiae - metabolism ; Software</subject><ispartof>BMC bioinformatics, 2006-11, Vol.7 (1), p.505-505, Article 505</ispartof><rights>Copyright © 2006 Wilczyński et al; licensee BioMed Central Ltd. 2006 Wilczyński et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423</citedby><cites>FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2001304/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2001304/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17109764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-10648$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilczyński, Bartek</creatorcontrib><creatorcontrib>Hvidsten, Torgeir R</creatorcontrib><creatorcontrib>Kryshtafovych, Andriy</creatorcontrib><creatorcontrib>Tiuryn, Jerzy</creatorcontrib><creatorcontrib>Komorowski, Jan</creatorcontrib><creatorcontrib>Fidelis, Krzysztof</creatorcontrib><title>Using local gene expression similarities to discover regulatory binding site modules</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>We present an approach designed to identify gene regulation patterns using sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the combinations of transcription factor binding sites (also referred to as binding site modules) identified in gene promoters to the expression of these genes. The novel aspects include local expression similarity clustering and an exact IF-THEN rule inference algorithm. We also provide a method of rule generalization to include genes with unknown expression profiles.
We have implemented the proposed framework and tested it on publicly available datasets from yeast S. cerevisae. The testing procedure consists of thorough statistical analyses of the groups of genes matching the rules we infer from expression data against known sets of co-regulated genes. For this purpose we have used published ChIP-Chip data and Gene Ontology annotations. In order to make these tests more objective we compare our results with recently published similar studies.
Results we obtain show that local expression similarity clustering greatly enhances overall quality of the derived rules, both in terms of enrichment of Gene Ontology functional annotation and coherence with ChIP-Chip binding data. Our approach thus provides reliable hypotheses on co-regulation that can be experimentally verified. An important feature of the method is its reliance only on widely accessible sequence and expression data. The same procedure can be easily applied to other microbial organisms.</description><subject>Binding Sites</subject><subject>Biologi</subject><subject>Biology</subject><subject>Cell Cycle</subject><subject>Chromatin Immunoprecipitation</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Fungal Proteins - chemistry</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Methodology</subject><subject>Multigene Family</subject><subject>NATURAL SCIENCES</subject><subject>NATURVETENSKAP</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Saccharomyces</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Software</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFks1v1DAQxS0EomXhzA3lxAWF2rHjjwtSKV-VKnFpuVqOPQmunHixk0L_e7zNqnQlEKexPG9-evYbhF4S_JYQyU8IE6RuCG5rUbe4fYSO728ePzgfoWc5X2NMhMTtU3REBMFKcHaMLq-yn4YqRGtCNcAEFfzaJsjZx6nKfvTBJD97yNUcK-ezjTeQqgTDEswc023V-cntCNnPUI3RLQHyc_SkNyHDi33doKtPHy_PvtQXXz-fn51e1B1naq5JX4qkvANsqGXWKNJy0UpgmBV7zEhKemXLIzrRONcT5tq2o9JSDAKzhm7Q-cp10VzrbfKjSbc6Gq_vLmIatEmztwG0U4ozYixuSc8kBSME7w12ChMHRvHCerOy8k_YLt0B7YP_dnpHWxZNMC_zG_RuVRfpCM7CNCcTDoYOO5P_rod4o5sSAsWsAN6vgM7HfwAOOzaOepen3uWphS5pF8jrvYsUfyyQZz2WhCAEM0FcsuaSyKaE_l9hgylVVKgiPFmFNsWcE_T3jgjWu437i4dXD3_ij36_YvQ30LvSdw</recordid><startdate>20061117</startdate><enddate>20061117</enddate><creator>Wilczyński, Bartek</creator><creator>Hvidsten, Torgeir R</creator><creator>Kryshtafovych, Andriy</creator><creator>Tiuryn, Jerzy</creator><creator>Komorowski, Jan</creator><creator>Fidelis, Krzysztof</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><scope>DOA</scope></search><sort><creationdate>20061117</creationdate><title>Using local gene expression similarities to discover regulatory binding site modules</title><author>Wilczyński, Bartek ; Hvidsten, Torgeir R ; Kryshtafovych, Andriy ; Tiuryn, Jerzy ; Komorowski, Jan ; Fidelis, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Binding Sites</topic><topic>Biologi</topic><topic>Biology</topic><topic>Cell Cycle</topic><topic>Chromatin Immunoprecipitation</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Fungal Proteins - chemistry</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Methodology</topic><topic>Multigene Family</topic><topic>NATURAL SCIENCES</topic><topic>NATURVETENSKAP</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Saccharomyces</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilczyński, Bartek</creatorcontrib><creatorcontrib>Hvidsten, Torgeir R</creatorcontrib><creatorcontrib>Kryshtafovych, Andriy</creatorcontrib><creatorcontrib>Tiuryn, Jerzy</creatorcontrib><creatorcontrib>Komorowski, Jan</creatorcontrib><creatorcontrib>Fidelis, Krzysztof</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilczyński, Bartek</au><au>Hvidsten, Torgeir R</au><au>Kryshtafovych, Andriy</au><au>Tiuryn, Jerzy</au><au>Komorowski, Jan</au><au>Fidelis, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using local gene expression similarities to discover regulatory binding site modules</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2006-11-17</date><risdate>2006</risdate><volume>7</volume><issue>1</issue><spage>505</spage><epage>505</epage><pages>505-505</pages><artnum>505</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>We present an approach designed to identify gene regulation patterns using sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the combinations of transcription factor binding sites (also referred to as binding site modules) identified in gene promoters to the expression of these genes. The novel aspects include local expression similarity clustering and an exact IF-THEN rule inference algorithm. We also provide a method of rule generalization to include genes with unknown expression profiles.
We have implemented the proposed framework and tested it on publicly available datasets from yeast S. cerevisae. The testing procedure consists of thorough statistical analyses of the groups of genes matching the rules we infer from expression data against known sets of co-regulated genes. For this purpose we have used published ChIP-Chip data and Gene Ontology annotations. In order to make these tests more objective we compare our results with recently published similar studies.
Results we obtain show that local expression similarity clustering greatly enhances overall quality of the derived rules, both in terms of enrichment of Gene Ontology functional annotation and coherence with ChIP-Chip binding data. Our approach thus provides reliable hypotheses on co-regulation that can be experimentally verified. An important feature of the method is its reliance only on widely accessible sequence and expression data. The same procedure can be easily applied to other microbial organisms.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>17109764</pmid><doi>10.1186/1471-2105-7-505</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2006-11, Vol.7 (1), p.505-505, Article 505 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d99641ac051f483ea776fa0d901dea96 |
source | PubMed Central |
subjects | Binding Sites Biologi Biology Cell Cycle Chromatin Immunoprecipitation Cluster Analysis Computational Biology - methods Fungal Proteins - chemistry Gene Expression Gene Expression Profiling Gene Expression Regulation, Fungal Methodology Multigene Family NATURAL SCIENCES NATURVETENSKAP Oligonucleotide Array Sequence Analysis Saccharomyces Saccharomyces cerevisiae - metabolism Software |
title | Using local gene expression similarities to discover regulatory binding site modules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20local%20gene%20expression%20similarities%20to%20discover%20regulatory%20binding%20site%20modules&rft.jtitle=BMC%20bioinformatics&rft.au=Wilczy%C5%84ski,%20Bartek&rft.date=2006-11-17&rft.volume=7&rft.issue=1&rft.spage=505&rft.epage=505&rft.pages=505-505&rft.artnum=505&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-7-505&rft_dat=%3Cproquest_doaj_%3E68182017%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20339379&rft_id=info:pmid/17109764&rfr_iscdi=true |