Loading…

Using local gene expression similarities to discover regulatory binding site modules

We present an approach designed to identify gene regulation patterns using sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the combinations of transcription factor binding sites (also referred to as binding site modules) identified in gene promoters to...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2006-11, Vol.7 (1), p.505-505, Article 505
Main Authors: Wilczyński, Bartek, Hvidsten, Torgeir R, Kryshtafovych, Andriy, Tiuryn, Jerzy, Komorowski, Jan, Fidelis, Krzysztof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423
cites cdi_FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423
container_end_page 505
container_issue 1
container_start_page 505
container_title BMC bioinformatics
container_volume 7
creator Wilczyński, Bartek
Hvidsten, Torgeir R
Kryshtafovych, Andriy
Tiuryn, Jerzy
Komorowski, Jan
Fidelis, Krzysztof
description We present an approach designed to identify gene regulation patterns using sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the combinations of transcription factor binding sites (also referred to as binding site modules) identified in gene promoters to the expression of these genes. The novel aspects include local expression similarity clustering and an exact IF-THEN rule inference algorithm. We also provide a method of rule generalization to include genes with unknown expression profiles. We have implemented the proposed framework and tested it on publicly available datasets from yeast S. cerevisae. The testing procedure consists of thorough statistical analyses of the groups of genes matching the rules we infer from expression data against known sets of co-regulated genes. For this purpose we have used published ChIP-Chip data and Gene Ontology annotations. In order to make these tests more objective we compare our results with recently published similar studies. Results we obtain show that local expression similarity clustering greatly enhances overall quality of the derived rules, both in terms of enrichment of Gene Ontology functional annotation and coherence with ChIP-Chip binding data. Our approach thus provides reliable hypotheses on co-regulation that can be experimentally verified. An important feature of the method is its reliance only on widely accessible sequence and expression data. The same procedure can be easily applied to other microbial organisms.
doi_str_mv 10.1186/1471-2105-7-505
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d99641ac051f483ea776fa0d901dea96</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d99641ac051f483ea776fa0d901dea96</doaj_id><sourcerecordid>68182017</sourcerecordid><originalsourceid>FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423</originalsourceid><addsrcrecordid>eNqFks1v1DAQxS0EomXhzA3lxAWF2rHjjwtSKV-VKnFpuVqOPQmunHixk0L_e7zNqnQlEKexPG9-evYbhF4S_JYQyU8IE6RuCG5rUbe4fYSO728ePzgfoWc5X2NMhMTtU3REBMFKcHaMLq-yn4YqRGtCNcAEFfzaJsjZx6nKfvTBJD97yNUcK-ezjTeQqgTDEswc023V-cntCNnPUI3RLQHyc_SkNyHDi33doKtPHy_PvtQXXz-fn51e1B1naq5JX4qkvANsqGXWKNJy0UpgmBV7zEhKemXLIzrRONcT5tq2o9JSDAKzhm7Q-cp10VzrbfKjSbc6Gq_vLmIatEmztwG0U4ozYixuSc8kBSME7w12ChMHRvHCerOy8k_YLt0B7YP_dnpHWxZNMC_zG_RuVRfpCM7CNCcTDoYOO5P_rod4o5sSAsWsAN6vgM7HfwAOOzaOepen3uWphS5pF8jrvYsUfyyQZz2WhCAEM0FcsuaSyKaE_l9hgylVVKgiPFmFNsWcE_T3jgjWu437i4dXD3_ij36_YvQ30LvSdw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20339379</pqid></control><display><type>article</type><title>Using local gene expression similarities to discover regulatory binding site modules</title><source>PubMed Central</source><creator>Wilczyński, Bartek ; Hvidsten, Torgeir R ; Kryshtafovych, Andriy ; Tiuryn, Jerzy ; Komorowski, Jan ; Fidelis, Krzysztof</creator><creatorcontrib>Wilczyński, Bartek ; Hvidsten, Torgeir R ; Kryshtafovych, Andriy ; Tiuryn, Jerzy ; Komorowski, Jan ; Fidelis, Krzysztof</creatorcontrib><description>We present an approach designed to identify gene regulation patterns using sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the combinations of transcription factor binding sites (also referred to as binding site modules) identified in gene promoters to the expression of these genes. The novel aspects include local expression similarity clustering and an exact IF-THEN rule inference algorithm. We also provide a method of rule generalization to include genes with unknown expression profiles. We have implemented the proposed framework and tested it on publicly available datasets from yeast S. cerevisae. The testing procedure consists of thorough statistical analyses of the groups of genes matching the rules we infer from expression data against known sets of co-regulated genes. For this purpose we have used published ChIP-Chip data and Gene Ontology annotations. In order to make these tests more objective we compare our results with recently published similar studies. Results we obtain show that local expression similarity clustering greatly enhances overall quality of the derived rules, both in terms of enrichment of Gene Ontology functional annotation and coherence with ChIP-Chip binding data. Our approach thus provides reliable hypotheses on co-regulation that can be experimentally verified. An important feature of the method is its reliance only on widely accessible sequence and expression data. The same procedure can be easily applied to other microbial organisms.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-7-505</identifier><identifier>PMID: 17109764</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Binding Sites ; Biologi ; Biology ; Cell Cycle ; Chromatin Immunoprecipitation ; Cluster Analysis ; Computational Biology - methods ; Fungal Proteins - chemistry ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Methodology ; Multigene Family ; NATURAL SCIENCES ; NATURVETENSKAP ; Oligonucleotide Array Sequence Analysis ; Saccharomyces ; Saccharomyces cerevisiae - metabolism ; Software</subject><ispartof>BMC bioinformatics, 2006-11, Vol.7 (1), p.505-505, Article 505</ispartof><rights>Copyright © 2006 Wilczyński et al; licensee BioMed Central Ltd. 2006 Wilczyński et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423</citedby><cites>FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2001304/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2001304/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17109764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-10648$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilczyński, Bartek</creatorcontrib><creatorcontrib>Hvidsten, Torgeir R</creatorcontrib><creatorcontrib>Kryshtafovych, Andriy</creatorcontrib><creatorcontrib>Tiuryn, Jerzy</creatorcontrib><creatorcontrib>Komorowski, Jan</creatorcontrib><creatorcontrib>Fidelis, Krzysztof</creatorcontrib><title>Using local gene expression similarities to discover regulatory binding site modules</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>We present an approach designed to identify gene regulation patterns using sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the combinations of transcription factor binding sites (also referred to as binding site modules) identified in gene promoters to the expression of these genes. The novel aspects include local expression similarity clustering and an exact IF-THEN rule inference algorithm. We also provide a method of rule generalization to include genes with unknown expression profiles. We have implemented the proposed framework and tested it on publicly available datasets from yeast S. cerevisae. The testing procedure consists of thorough statistical analyses of the groups of genes matching the rules we infer from expression data against known sets of co-regulated genes. For this purpose we have used published ChIP-Chip data and Gene Ontology annotations. In order to make these tests more objective we compare our results with recently published similar studies. Results we obtain show that local expression similarity clustering greatly enhances overall quality of the derived rules, both in terms of enrichment of Gene Ontology functional annotation and coherence with ChIP-Chip binding data. Our approach thus provides reliable hypotheses on co-regulation that can be experimentally verified. An important feature of the method is its reliance only on widely accessible sequence and expression data. The same procedure can be easily applied to other microbial organisms.</description><subject>Binding Sites</subject><subject>Biologi</subject><subject>Biology</subject><subject>Cell Cycle</subject><subject>Chromatin Immunoprecipitation</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Fungal Proteins - chemistry</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Methodology</subject><subject>Multigene Family</subject><subject>NATURAL SCIENCES</subject><subject>NATURVETENSKAP</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Saccharomyces</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Software</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFks1v1DAQxS0EomXhzA3lxAWF2rHjjwtSKV-VKnFpuVqOPQmunHixk0L_e7zNqnQlEKexPG9-evYbhF4S_JYQyU8IE6RuCG5rUbe4fYSO728ePzgfoWc5X2NMhMTtU3REBMFKcHaMLq-yn4YqRGtCNcAEFfzaJsjZx6nKfvTBJD97yNUcK-ezjTeQqgTDEswc023V-cntCNnPUI3RLQHyc_SkNyHDi33doKtPHy_PvtQXXz-fn51e1B1naq5JX4qkvANsqGXWKNJy0UpgmBV7zEhKemXLIzrRONcT5tq2o9JSDAKzhm7Q-cp10VzrbfKjSbc6Gq_vLmIatEmztwG0U4ozYixuSc8kBSME7w12ChMHRvHCerOy8k_YLt0B7YP_dnpHWxZNMC_zG_RuVRfpCM7CNCcTDoYOO5P_rod4o5sSAsWsAN6vgM7HfwAOOzaOepen3uWphS5pF8jrvYsUfyyQZz2WhCAEM0FcsuaSyKaE_l9hgylVVKgiPFmFNsWcE_T3jgjWu437i4dXD3_ij36_YvQ30LvSdw</recordid><startdate>20061117</startdate><enddate>20061117</enddate><creator>Wilczyński, Bartek</creator><creator>Hvidsten, Torgeir R</creator><creator>Kryshtafovych, Andriy</creator><creator>Tiuryn, Jerzy</creator><creator>Komorowski, Jan</creator><creator>Fidelis, Krzysztof</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><scope>DOA</scope></search><sort><creationdate>20061117</creationdate><title>Using local gene expression similarities to discover regulatory binding site modules</title><author>Wilczyński, Bartek ; Hvidsten, Torgeir R ; Kryshtafovych, Andriy ; Tiuryn, Jerzy ; Komorowski, Jan ; Fidelis, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Binding Sites</topic><topic>Biologi</topic><topic>Biology</topic><topic>Cell Cycle</topic><topic>Chromatin Immunoprecipitation</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Fungal Proteins - chemistry</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Methodology</topic><topic>Multigene Family</topic><topic>NATURAL SCIENCES</topic><topic>NATURVETENSKAP</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Saccharomyces</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilczyński, Bartek</creatorcontrib><creatorcontrib>Hvidsten, Torgeir R</creatorcontrib><creatorcontrib>Kryshtafovych, Andriy</creatorcontrib><creatorcontrib>Tiuryn, Jerzy</creatorcontrib><creatorcontrib>Komorowski, Jan</creatorcontrib><creatorcontrib>Fidelis, Krzysztof</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilczyński, Bartek</au><au>Hvidsten, Torgeir R</au><au>Kryshtafovych, Andriy</au><au>Tiuryn, Jerzy</au><au>Komorowski, Jan</au><au>Fidelis, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using local gene expression similarities to discover regulatory binding site modules</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2006-11-17</date><risdate>2006</risdate><volume>7</volume><issue>1</issue><spage>505</spage><epage>505</epage><pages>505-505</pages><artnum>505</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>We present an approach designed to identify gene regulation patterns using sequence and expression data collected for Saccharomyces cerevisae. Our main goal is to relate the combinations of transcription factor binding sites (also referred to as binding site modules) identified in gene promoters to the expression of these genes. The novel aspects include local expression similarity clustering and an exact IF-THEN rule inference algorithm. We also provide a method of rule generalization to include genes with unknown expression profiles. We have implemented the proposed framework and tested it on publicly available datasets from yeast S. cerevisae. The testing procedure consists of thorough statistical analyses of the groups of genes matching the rules we infer from expression data against known sets of co-regulated genes. For this purpose we have used published ChIP-Chip data and Gene Ontology annotations. In order to make these tests more objective we compare our results with recently published similar studies. Results we obtain show that local expression similarity clustering greatly enhances overall quality of the derived rules, both in terms of enrichment of Gene Ontology functional annotation and coherence with ChIP-Chip binding data. Our approach thus provides reliable hypotheses on co-regulation that can be experimentally verified. An important feature of the method is its reliance only on widely accessible sequence and expression data. The same procedure can be easily applied to other microbial organisms.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>17109764</pmid><doi>10.1186/1471-2105-7-505</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2006-11, Vol.7 (1), p.505-505, Article 505
issn 1471-2105
1471-2105
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d99641ac051f483ea776fa0d901dea96
source PubMed Central
subjects Binding Sites
Biologi
Biology
Cell Cycle
Chromatin Immunoprecipitation
Cluster Analysis
Computational Biology - methods
Fungal Proteins - chemistry
Gene Expression
Gene Expression Profiling
Gene Expression Regulation, Fungal
Methodology
Multigene Family
NATURAL SCIENCES
NATURVETENSKAP
Oligonucleotide Array Sequence Analysis
Saccharomyces
Saccharomyces cerevisiae - metabolism
Software
title Using local gene expression similarities to discover regulatory binding site modules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20local%20gene%20expression%20similarities%20to%20discover%20regulatory%20binding%20site%20modules&rft.jtitle=BMC%20bioinformatics&rft.au=Wilczy%C5%84ski,%20Bartek&rft.date=2006-11-17&rft.volume=7&rft.issue=1&rft.spage=505&rft.epage=505&rft.pages=505-505&rft.artnum=505&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-7-505&rft_dat=%3Cproquest_doaj_%3E68182017%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b649t-1f649836be0a3c4ca9156758e4040974a831f9c471b72ddf14d55b38c30e70423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20339379&rft_id=info:pmid/17109764&rfr_iscdi=true