Loading…
Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis
There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the ce...
Saved in:
Published in: | Micromachines (Basel) 2023-08, Vol.14 (9), p.1653 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c476t-641630bca59c0e44b5a54f1a152c72e420e230f23ee2bb84e045cd5d363d19c3 |
container_end_page | |
container_issue | 9 |
container_start_page | 1653 |
container_title | Micromachines (Basel) |
container_volume | 14 |
creator | Abraham, Ashley Virdi, Sukhman Herrero, Nick Bryant, Israel Nwakama, Chisom Jacob, Megha Khaparde, Gargee Jordan, Destiny McCuddin, Mackenzie McKinley, Spencer Taylor, Adam Peeples, Conner Ekpenyong, Andrew |
description | There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the cells to clogging and extravasation, the latter being a step in metastasis. Here, we investigate which other anti-cancer drugs might have similar prometastatic effects by altering the biophysical properties of cells. We treated myelogenous (K562) leukemic cancer cells with the drugs nocodazole and hydroxyurea and then measured their mechanical properties using a microfluidic microcirculation mimetic (MMM) device, which mimics aspects of blood circulation and enables the measurement of cell mechanical properties via transit times through the device. We also quantified the morphological properties of cells to explore biophysical mechanisms underlying the MMM results. Results from MMM measurements show that nocodazole- and hydroxyurea-treated K562 cells exhibit significantly altered transit times. Nocodazole caused a significant (p < 0.01) increase in transit times, implying a stiffening of cells. This work shows the feasibility of using an MMM to explore possible biophysical mechanisms that might contribute to chemotherapy-induced metastasis. Our work also suggests cell mechanics as a therapeutic target for much needed antimetastatic strategies in general. |
doi_str_mv | 10.3390/mi14091653 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d9a04b6ad7564d80b995f513f10a3852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771812718</galeid><doaj_id>oai_doaj_org_article_d9a04b6ad7564d80b995f513f10a3852</doaj_id><sourcerecordid>A771812718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-641630bca59c0e44b5a54f1a152c72e420e230f23ee2bb84e045cd5d363d19c3</originalsourceid><addsrcrecordid>eNptkk1r3DAQhk1paUKaS3-BoZdScKpv2aeSLkm6kNBLDr0JWRqttdjSVrJD999XyYY2WyqJkTTzziNGTFW9x-iC0g59njxmqMOC01fVKUGSNEKIH69fnE-q85y3qAwpu2LeVidUSkFbLE6r6c6bFN24eOtN_XQxPpll1LOPoTgmmEvAxVRf_dqNMfmwqb_6uBv22Rs91ndgBh18nnIdXb0aYIrzAEnv9s062MWALZJZ57J8fle9cXrMcP68n1X311f3q2_N7feb9erytjFMirkRDAuKeqN5ZxAw1nPNmcMac2IkAUYQEIocoQCk71sGiHFjuaWCWtwZelatD1gb9Vbtkp902quovXpyxLRROpWyRlC204j1QlvJBbMt6ruOO46pw0jTlpPC-nJg7ZZ-AmsgzEmPR9DjSPCD2sQHhRGnoiW4ED4-E1L8uUCe1eSzgXHUAeKSFWklwowI1hXph3-k27ikUL6qqETHBEHihWqjSwU-uFgeNo9QdSklbjEppqgu_qMq08LkTQzgfPEfJXw6JJQeyDmB-1MkRuqx19TfXqO_Aa76xIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869462069</pqid></control><display><type>article</type><title>Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Abraham, Ashley ; Virdi, Sukhman ; Herrero, Nick ; Bryant, Israel ; Nwakama, Chisom ; Jacob, Megha ; Khaparde, Gargee ; Jordan, Destiny ; McCuddin, Mackenzie ; McKinley, Spencer ; Taylor, Adam ; Peeples, Conner ; Ekpenyong, Andrew</creator><creatorcontrib>Abraham, Ashley ; Virdi, Sukhman ; Herrero, Nick ; Bryant, Israel ; Nwakama, Chisom ; Jacob, Megha ; Khaparde, Gargee ; Jordan, Destiny ; McCuddin, Mackenzie ; McKinley, Spencer ; Taylor, Adam ; Peeples, Conner ; Ekpenyong, Andrew</creatorcontrib><description>There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the cells to clogging and extravasation, the latter being a step in metastasis. Here, we investigate which other anti-cancer drugs might have similar prometastatic effects by altering the biophysical properties of cells. We treated myelogenous (K562) leukemic cancer cells with the drugs nocodazole and hydroxyurea and then measured their mechanical properties using a microfluidic microcirculation mimetic (MMM) device, which mimics aspects of blood circulation and enables the measurement of cell mechanical properties via transit times through the device. We also quantified the morphological properties of cells to explore biophysical mechanisms underlying the MMM results. Results from MMM measurements show that nocodazole- and hydroxyurea-treated K562 cells exhibit significantly altered transit times. Nocodazole caused a significant (p < 0.01) increase in transit times, implying a stiffening of cells. This work shows the feasibility of using an MMM to explore possible biophysical mechanisms that might contribute to chemotherapy-induced metastasis. Our work also suggests cell mechanics as a therapeutic target for much needed antimetastatic strategies in general.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi14091653</identifier><identifier>PMID: 37763816</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Blood ; Blood circulation ; Cancer ; Cancer therapies ; Cell adhesion & migration ; Cell death ; Chemotherapy ; Cytoskeleton ; Disease ; Doxorubicin ; Drugs ; Hydroxyurea ; Leukemia ; Mechanical properties ; Medical research ; Medicine, Experimental ; Metastasis ; Microfluidics ; Neutrophils ; physics of cancer ; Stiffening ; Transit time ; Vincristine</subject><ispartof>Micromachines (Basel), 2023-08, Vol.14 (9), p.1653</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c476t-641630bca59c0e44b5a54f1a152c72e420e230f23ee2bb84e045cd5d363d19c3</cites><orcidid>0000-0003-0191-8393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869462069/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869462069?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Abraham, Ashley</creatorcontrib><creatorcontrib>Virdi, Sukhman</creatorcontrib><creatorcontrib>Herrero, Nick</creatorcontrib><creatorcontrib>Bryant, Israel</creatorcontrib><creatorcontrib>Nwakama, Chisom</creatorcontrib><creatorcontrib>Jacob, Megha</creatorcontrib><creatorcontrib>Khaparde, Gargee</creatorcontrib><creatorcontrib>Jordan, Destiny</creatorcontrib><creatorcontrib>McCuddin, Mackenzie</creatorcontrib><creatorcontrib>McKinley, Spencer</creatorcontrib><creatorcontrib>Taylor, Adam</creatorcontrib><creatorcontrib>Peeples, Conner</creatorcontrib><creatorcontrib>Ekpenyong, Andrew</creatorcontrib><title>Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis</title><title>Micromachines (Basel)</title><description>There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the cells to clogging and extravasation, the latter being a step in metastasis. Here, we investigate which other anti-cancer drugs might have similar prometastatic effects by altering the biophysical properties of cells. We treated myelogenous (K562) leukemic cancer cells with the drugs nocodazole and hydroxyurea and then measured their mechanical properties using a microfluidic microcirculation mimetic (MMM) device, which mimics aspects of blood circulation and enables the measurement of cell mechanical properties via transit times through the device. We also quantified the morphological properties of cells to explore biophysical mechanisms underlying the MMM results. Results from MMM measurements show that nocodazole- and hydroxyurea-treated K562 cells exhibit significantly altered transit times. Nocodazole caused a significant (p < 0.01) increase in transit times, implying a stiffening of cells. This work shows the feasibility of using an MMM to explore possible biophysical mechanisms that might contribute to chemotherapy-induced metastasis. Our work also suggests cell mechanics as a therapeutic target for much needed antimetastatic strategies in general.</description><subject>Blood</subject><subject>Blood circulation</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell adhesion & migration</subject><subject>Cell death</subject><subject>Chemotherapy</subject><subject>Cytoskeleton</subject><subject>Disease</subject><subject>Doxorubicin</subject><subject>Drugs</subject><subject>Hydroxyurea</subject><subject>Leukemia</subject><subject>Mechanical properties</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Metastasis</subject><subject>Microfluidics</subject><subject>Neutrophils</subject><subject>physics of cancer</subject><subject>Stiffening</subject><subject>Transit time</subject><subject>Vincristine</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1r3DAQhk1paUKaS3-BoZdScKpv2aeSLkm6kNBLDr0JWRqttdjSVrJD999XyYY2WyqJkTTzziNGTFW9x-iC0g59njxmqMOC01fVKUGSNEKIH69fnE-q85y3qAwpu2LeVidUSkFbLE6r6c6bFN24eOtN_XQxPpll1LOPoTgmmEvAxVRf_dqNMfmwqb_6uBv22Rs91ndgBh18nnIdXb0aYIrzAEnv9s062MWALZJZ57J8fle9cXrMcP68n1X311f3q2_N7feb9erytjFMirkRDAuKeqN5ZxAw1nPNmcMac2IkAUYQEIocoQCk71sGiHFjuaWCWtwZelatD1gb9Vbtkp902quovXpyxLRROpWyRlC204j1QlvJBbMt6ruOO46pw0jTlpPC-nJg7ZZ-AmsgzEmPR9DjSPCD2sQHhRGnoiW4ED4-E1L8uUCe1eSzgXHUAeKSFWklwowI1hXph3-k27ikUL6qqETHBEHihWqjSwU-uFgeNo9QdSklbjEppqgu_qMq08LkTQzgfPEfJXw6JJQeyDmB-1MkRuqx19TfXqO_Aa76xIQ</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Abraham, Ashley</creator><creator>Virdi, Sukhman</creator><creator>Herrero, Nick</creator><creator>Bryant, Israel</creator><creator>Nwakama, Chisom</creator><creator>Jacob, Megha</creator><creator>Khaparde, Gargee</creator><creator>Jordan, Destiny</creator><creator>McCuddin, Mackenzie</creator><creator>McKinley, Spencer</creator><creator>Taylor, Adam</creator><creator>Peeples, Conner</creator><creator>Ekpenyong, Andrew</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0191-8393</orcidid></search><sort><creationdate>20230822</creationdate><title>Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis</title><author>Abraham, Ashley ; Virdi, Sukhman ; Herrero, Nick ; Bryant, Israel ; Nwakama, Chisom ; Jacob, Megha ; Khaparde, Gargee ; Jordan, Destiny ; McCuddin, Mackenzie ; McKinley, Spencer ; Taylor, Adam ; Peeples, Conner ; Ekpenyong, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-641630bca59c0e44b5a54f1a152c72e420e230f23ee2bb84e045cd5d363d19c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blood</topic><topic>Blood circulation</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell adhesion & migration</topic><topic>Cell death</topic><topic>Chemotherapy</topic><topic>Cytoskeleton</topic><topic>Disease</topic><topic>Doxorubicin</topic><topic>Drugs</topic><topic>Hydroxyurea</topic><topic>Leukemia</topic><topic>Mechanical properties</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Metastasis</topic><topic>Microfluidics</topic><topic>Neutrophils</topic><topic>physics of cancer</topic><topic>Stiffening</topic><topic>Transit time</topic><topic>Vincristine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Ashley</creatorcontrib><creatorcontrib>Virdi, Sukhman</creatorcontrib><creatorcontrib>Herrero, Nick</creatorcontrib><creatorcontrib>Bryant, Israel</creatorcontrib><creatorcontrib>Nwakama, Chisom</creatorcontrib><creatorcontrib>Jacob, Megha</creatorcontrib><creatorcontrib>Khaparde, Gargee</creatorcontrib><creatorcontrib>Jordan, Destiny</creatorcontrib><creatorcontrib>McCuddin, Mackenzie</creatorcontrib><creatorcontrib>McKinley, Spencer</creatorcontrib><creatorcontrib>Taylor, Adam</creatorcontrib><creatorcontrib>Peeples, Conner</creatorcontrib><creatorcontrib>Ekpenyong, Andrew</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Ashley</au><au>Virdi, Sukhman</au><au>Herrero, Nick</au><au>Bryant, Israel</au><au>Nwakama, Chisom</au><au>Jacob, Megha</au><au>Khaparde, Gargee</au><au>Jordan, Destiny</au><au>McCuddin, Mackenzie</au><au>McKinley, Spencer</au><au>Taylor, Adam</au><au>Peeples, Conner</au><au>Ekpenyong, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis</atitle><jtitle>Micromachines (Basel)</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>14</volume><issue>9</issue><spage>1653</spage><pages>1653-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the cells to clogging and extravasation, the latter being a step in metastasis. Here, we investigate which other anti-cancer drugs might have similar prometastatic effects by altering the biophysical properties of cells. We treated myelogenous (K562) leukemic cancer cells with the drugs nocodazole and hydroxyurea and then measured their mechanical properties using a microfluidic microcirculation mimetic (MMM) device, which mimics aspects of blood circulation and enables the measurement of cell mechanical properties via transit times through the device. We also quantified the morphological properties of cells to explore biophysical mechanisms underlying the MMM results. Results from MMM measurements show that nocodazole- and hydroxyurea-treated K562 cells exhibit significantly altered transit times. Nocodazole caused a significant (p < 0.01) increase in transit times, implying a stiffening of cells. This work shows the feasibility of using an MMM to explore possible biophysical mechanisms that might contribute to chemotherapy-induced metastasis. Our work also suggests cell mechanics as a therapeutic target for much needed antimetastatic strategies in general.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37763816</pmid><doi>10.3390/mi14091653</doi><orcidid>https://orcid.org/0000-0003-0191-8393</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2023-08, Vol.14 (9), p.1653 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d9a04b6ad7564d80b995f513f10a3852 |
source | Publicly Available Content Database; PubMed Central |
subjects | Blood Blood circulation Cancer Cancer therapies Cell adhesion & migration Cell death Chemotherapy Cytoskeleton Disease Doxorubicin Drugs Hydroxyurea Leukemia Mechanical properties Medical research Medicine, Experimental Metastasis Microfluidics Neutrophils physics of cancer Stiffening Transit time Vincristine |
title | Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20Microcirculation%20Mimetic%20for%20Exploring%20Biophysical%20Mechanisms%20of%20Chemotherapy-Induced%20Metastasis&rft.jtitle=Micromachines%20(Basel)&rft.au=Abraham,%20Ashley&rft.date=2023-08-22&rft.volume=14&rft.issue=9&rft.spage=1653&rft.pages=1653-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi14091653&rft_dat=%3Cgale_doaj_%3EA771812718%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-641630bca59c0e44b5a54f1a152c72e420e230f23ee2bb84e045cd5d363d19c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869462069&rft_id=info:pmid/37763816&rft_galeid=A771812718&rfr_iscdi=true |