Loading…

Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis

There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the ce...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2023-08, Vol.14 (9), p.1653
Main Authors: Abraham, Ashley, Virdi, Sukhman, Herrero, Nick, Bryant, Israel, Nwakama, Chisom, Jacob, Megha, Khaparde, Gargee, Jordan, Destiny, McCuddin, Mackenzie, McKinley, Spencer, Taylor, Adam, Peeples, Conner, Ekpenyong, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c476t-641630bca59c0e44b5a54f1a152c72e420e230f23ee2bb84e045cd5d363d19c3
container_end_page
container_issue 9
container_start_page 1653
container_title Micromachines (Basel)
container_volume 14
creator Abraham, Ashley
Virdi, Sukhman
Herrero, Nick
Bryant, Israel
Nwakama, Chisom
Jacob, Megha
Khaparde, Gargee
Jordan, Destiny
McCuddin, Mackenzie
McKinley, Spencer
Taylor, Adam
Peeples, Conner
Ekpenyong, Andrew
description There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the cells to clogging and extravasation, the latter being a step in metastasis. Here, we investigate which other anti-cancer drugs might have similar prometastatic effects by altering the biophysical properties of cells. We treated myelogenous (K562) leukemic cancer cells with the drugs nocodazole and hydroxyurea and then measured their mechanical properties using a microfluidic microcirculation mimetic (MMM) device, which mimics aspects of blood circulation and enables the measurement of cell mechanical properties via transit times through the device. We also quantified the morphological properties of cells to explore biophysical mechanisms underlying the MMM results. Results from MMM measurements show that nocodazole- and hydroxyurea-treated K562 cells exhibit significantly altered transit times. Nocodazole caused a significant (p < 0.01) increase in transit times, implying a stiffening of cells. This work shows the feasibility of using an MMM to explore possible biophysical mechanisms that might contribute to chemotherapy-induced metastasis. Our work also suggests cell mechanics as a therapeutic target for much needed antimetastatic strategies in general.
doi_str_mv 10.3390/mi14091653
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d9a04b6ad7564d80b995f513f10a3852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771812718</galeid><doaj_id>oai_doaj_org_article_d9a04b6ad7564d80b995f513f10a3852</doaj_id><sourcerecordid>A771812718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-641630bca59c0e44b5a54f1a152c72e420e230f23ee2bb84e045cd5d363d19c3</originalsourceid><addsrcrecordid>eNptkk1r3DAQhk1paUKaS3-BoZdScKpv2aeSLkm6kNBLDr0JWRqttdjSVrJD999XyYY2WyqJkTTzziNGTFW9x-iC0g59njxmqMOC01fVKUGSNEKIH69fnE-q85y3qAwpu2LeVidUSkFbLE6r6c6bFN24eOtN_XQxPpll1LOPoTgmmEvAxVRf_dqNMfmwqb_6uBv22Rs91ndgBh18nnIdXb0aYIrzAEnv9s062MWALZJZ57J8fle9cXrMcP68n1X311f3q2_N7feb9erytjFMirkRDAuKeqN5ZxAw1nPNmcMac2IkAUYQEIocoQCk71sGiHFjuaWCWtwZelatD1gb9Vbtkp902quovXpyxLRROpWyRlC204j1QlvJBbMt6ruOO46pw0jTlpPC-nJg7ZZ-AmsgzEmPR9DjSPCD2sQHhRGnoiW4ED4-E1L8uUCe1eSzgXHUAeKSFWklwowI1hXph3-k27ikUL6qqETHBEHihWqjSwU-uFgeNo9QdSklbjEppqgu_qMq08LkTQzgfPEfJXw6JJQeyDmB-1MkRuqx19TfXqO_Aa76xIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869462069</pqid></control><display><type>article</type><title>Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Abraham, Ashley ; Virdi, Sukhman ; Herrero, Nick ; Bryant, Israel ; Nwakama, Chisom ; Jacob, Megha ; Khaparde, Gargee ; Jordan, Destiny ; McCuddin, Mackenzie ; McKinley, Spencer ; Taylor, Adam ; Peeples, Conner ; Ekpenyong, Andrew</creator><creatorcontrib>Abraham, Ashley ; Virdi, Sukhman ; Herrero, Nick ; Bryant, Israel ; Nwakama, Chisom ; Jacob, Megha ; Khaparde, Gargee ; Jordan, Destiny ; McCuddin, Mackenzie ; McKinley, Spencer ; Taylor, Adam ; Peeples, Conner ; Ekpenyong, Andrew</creatorcontrib><description>There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the cells to clogging and extravasation, the latter being a step in metastasis. Here, we investigate which other anti-cancer drugs might have similar prometastatic effects by altering the biophysical properties of cells. We treated myelogenous (K562) leukemic cancer cells with the drugs nocodazole and hydroxyurea and then measured their mechanical properties using a microfluidic microcirculation mimetic (MMM) device, which mimics aspects of blood circulation and enables the measurement of cell mechanical properties via transit times through the device. We also quantified the morphological properties of cells to explore biophysical mechanisms underlying the MMM results. Results from MMM measurements show that nocodazole- and hydroxyurea-treated K562 cells exhibit significantly altered transit times. Nocodazole caused a significant (p &lt; 0.01) increase in transit times, implying a stiffening of cells. This work shows the feasibility of using an MMM to explore possible biophysical mechanisms that might contribute to chemotherapy-induced metastasis. Our work also suggests cell mechanics as a therapeutic target for much needed antimetastatic strategies in general.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi14091653</identifier><identifier>PMID: 37763816</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Blood ; Blood circulation ; Cancer ; Cancer therapies ; Cell adhesion &amp; migration ; Cell death ; Chemotherapy ; Cytoskeleton ; Disease ; Doxorubicin ; Drugs ; Hydroxyurea ; Leukemia ; Mechanical properties ; Medical research ; Medicine, Experimental ; Metastasis ; Microfluidics ; Neutrophils ; physics of cancer ; Stiffening ; Transit time ; Vincristine</subject><ispartof>Micromachines (Basel), 2023-08, Vol.14 (9), p.1653</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c476t-641630bca59c0e44b5a54f1a152c72e420e230f23ee2bb84e045cd5d363d19c3</cites><orcidid>0000-0003-0191-8393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869462069/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869462069?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Abraham, Ashley</creatorcontrib><creatorcontrib>Virdi, Sukhman</creatorcontrib><creatorcontrib>Herrero, Nick</creatorcontrib><creatorcontrib>Bryant, Israel</creatorcontrib><creatorcontrib>Nwakama, Chisom</creatorcontrib><creatorcontrib>Jacob, Megha</creatorcontrib><creatorcontrib>Khaparde, Gargee</creatorcontrib><creatorcontrib>Jordan, Destiny</creatorcontrib><creatorcontrib>McCuddin, Mackenzie</creatorcontrib><creatorcontrib>McKinley, Spencer</creatorcontrib><creatorcontrib>Taylor, Adam</creatorcontrib><creatorcontrib>Peeples, Conner</creatorcontrib><creatorcontrib>Ekpenyong, Andrew</creatorcontrib><title>Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis</title><title>Micromachines (Basel)</title><description>There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the cells to clogging and extravasation, the latter being a step in metastasis. Here, we investigate which other anti-cancer drugs might have similar prometastatic effects by altering the biophysical properties of cells. We treated myelogenous (K562) leukemic cancer cells with the drugs nocodazole and hydroxyurea and then measured their mechanical properties using a microfluidic microcirculation mimetic (MMM) device, which mimics aspects of blood circulation and enables the measurement of cell mechanical properties via transit times through the device. We also quantified the morphological properties of cells to explore biophysical mechanisms underlying the MMM results. Results from MMM measurements show that nocodazole- and hydroxyurea-treated K562 cells exhibit significantly altered transit times. Nocodazole caused a significant (p &lt; 0.01) increase in transit times, implying a stiffening of cells. This work shows the feasibility of using an MMM to explore possible biophysical mechanisms that might contribute to chemotherapy-induced metastasis. Our work also suggests cell mechanics as a therapeutic target for much needed antimetastatic strategies in general.</description><subject>Blood</subject><subject>Blood circulation</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell death</subject><subject>Chemotherapy</subject><subject>Cytoskeleton</subject><subject>Disease</subject><subject>Doxorubicin</subject><subject>Drugs</subject><subject>Hydroxyurea</subject><subject>Leukemia</subject><subject>Mechanical properties</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Metastasis</subject><subject>Microfluidics</subject><subject>Neutrophils</subject><subject>physics of cancer</subject><subject>Stiffening</subject><subject>Transit time</subject><subject>Vincristine</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1r3DAQhk1paUKaS3-BoZdScKpv2aeSLkm6kNBLDr0JWRqttdjSVrJD999XyYY2WyqJkTTzziNGTFW9x-iC0g59njxmqMOC01fVKUGSNEKIH69fnE-q85y3qAwpu2LeVidUSkFbLE6r6c6bFN24eOtN_XQxPpll1LOPoTgmmEvAxVRf_dqNMfmwqb_6uBv22Rs91ndgBh18nnIdXb0aYIrzAEnv9s062MWALZJZ57J8fle9cXrMcP68n1X311f3q2_N7feb9erytjFMirkRDAuKeqN5ZxAw1nPNmcMac2IkAUYQEIocoQCk71sGiHFjuaWCWtwZelatD1gb9Vbtkp902quovXpyxLRROpWyRlC204j1QlvJBbMt6ruOO46pw0jTlpPC-nJg7ZZ-AmsgzEmPR9DjSPCD2sQHhRGnoiW4ED4-E1L8uUCe1eSzgXHUAeKSFWklwowI1hXph3-k27ikUL6qqETHBEHihWqjSwU-uFgeNo9QdSklbjEppqgu_qMq08LkTQzgfPEfJXw6JJQeyDmB-1MkRuqx19TfXqO_Aa76xIQ</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Abraham, Ashley</creator><creator>Virdi, Sukhman</creator><creator>Herrero, Nick</creator><creator>Bryant, Israel</creator><creator>Nwakama, Chisom</creator><creator>Jacob, Megha</creator><creator>Khaparde, Gargee</creator><creator>Jordan, Destiny</creator><creator>McCuddin, Mackenzie</creator><creator>McKinley, Spencer</creator><creator>Taylor, Adam</creator><creator>Peeples, Conner</creator><creator>Ekpenyong, Andrew</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0191-8393</orcidid></search><sort><creationdate>20230822</creationdate><title>Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis</title><author>Abraham, Ashley ; Virdi, Sukhman ; Herrero, Nick ; Bryant, Israel ; Nwakama, Chisom ; Jacob, Megha ; Khaparde, Gargee ; Jordan, Destiny ; McCuddin, Mackenzie ; McKinley, Spencer ; Taylor, Adam ; Peeples, Conner ; Ekpenyong, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-641630bca59c0e44b5a54f1a152c72e420e230f23ee2bb84e045cd5d363d19c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blood</topic><topic>Blood circulation</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell death</topic><topic>Chemotherapy</topic><topic>Cytoskeleton</topic><topic>Disease</topic><topic>Doxorubicin</topic><topic>Drugs</topic><topic>Hydroxyurea</topic><topic>Leukemia</topic><topic>Mechanical properties</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Metastasis</topic><topic>Microfluidics</topic><topic>Neutrophils</topic><topic>physics of cancer</topic><topic>Stiffening</topic><topic>Transit time</topic><topic>Vincristine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Ashley</creatorcontrib><creatorcontrib>Virdi, Sukhman</creatorcontrib><creatorcontrib>Herrero, Nick</creatorcontrib><creatorcontrib>Bryant, Israel</creatorcontrib><creatorcontrib>Nwakama, Chisom</creatorcontrib><creatorcontrib>Jacob, Megha</creatorcontrib><creatorcontrib>Khaparde, Gargee</creatorcontrib><creatorcontrib>Jordan, Destiny</creatorcontrib><creatorcontrib>McCuddin, Mackenzie</creatorcontrib><creatorcontrib>McKinley, Spencer</creatorcontrib><creatorcontrib>Taylor, Adam</creatorcontrib><creatorcontrib>Peeples, Conner</creatorcontrib><creatorcontrib>Ekpenyong, Andrew</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Ashley</au><au>Virdi, Sukhman</au><au>Herrero, Nick</au><au>Bryant, Israel</au><au>Nwakama, Chisom</au><au>Jacob, Megha</au><au>Khaparde, Gargee</au><au>Jordan, Destiny</au><au>McCuddin, Mackenzie</au><au>McKinley, Spencer</au><au>Taylor, Adam</au><au>Peeples, Conner</au><au>Ekpenyong, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis</atitle><jtitle>Micromachines (Basel)</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>14</volume><issue>9</issue><spage>1653</spage><pages>1653-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the cells to clogging and extravasation, the latter being a step in metastasis. Here, we investigate which other anti-cancer drugs might have similar prometastatic effects by altering the biophysical properties of cells. We treated myelogenous (K562) leukemic cancer cells with the drugs nocodazole and hydroxyurea and then measured their mechanical properties using a microfluidic microcirculation mimetic (MMM) device, which mimics aspects of blood circulation and enables the measurement of cell mechanical properties via transit times through the device. We also quantified the morphological properties of cells to explore biophysical mechanisms underlying the MMM results. Results from MMM measurements show that nocodazole- and hydroxyurea-treated K562 cells exhibit significantly altered transit times. Nocodazole caused a significant (p &lt; 0.01) increase in transit times, implying a stiffening of cells. This work shows the feasibility of using an MMM to explore possible biophysical mechanisms that might contribute to chemotherapy-induced metastasis. Our work also suggests cell mechanics as a therapeutic target for much needed antimetastatic strategies in general.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37763816</pmid><doi>10.3390/mi14091653</doi><orcidid>https://orcid.org/0000-0003-0191-8393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2023-08, Vol.14 (9), p.1653
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d9a04b6ad7564d80b995f513f10a3852
source Publicly Available Content Database; PubMed Central
subjects Blood
Blood circulation
Cancer
Cancer therapies
Cell adhesion & migration
Cell death
Chemotherapy
Cytoskeleton
Disease
Doxorubicin
Drugs
Hydroxyurea
Leukemia
Mechanical properties
Medical research
Medicine, Experimental
Metastasis
Microfluidics
Neutrophils
physics of cancer
Stiffening
Transit time
Vincristine
title Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20Microcirculation%20Mimetic%20for%20Exploring%20Biophysical%20Mechanisms%20of%20Chemotherapy-Induced%20Metastasis&rft.jtitle=Micromachines%20(Basel)&rft.au=Abraham,%20Ashley&rft.date=2023-08-22&rft.volume=14&rft.issue=9&rft.spage=1653&rft.pages=1653-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi14091653&rft_dat=%3Cgale_doaj_%3EA771812718%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-641630bca59c0e44b5a54f1a152c72e420e230f23ee2bb84e045cd5d363d19c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869462069&rft_id=info:pmid/37763816&rft_galeid=A771812718&rfr_iscdi=true