Loading…

The gut microbiome and its potential role in paradoxical anaerobism in pupfishes of the Mojave Desert

Pupfishes frequently enter paradoxical anaerobism in response to endogenously produced or exogenously supplied ethanol in a dose-dependent manner. To decipher the role of the gut microbiota in ethanol-associated paradoxical anaerobism, gut microbial communities were depleted using a cocktail of anti...

Full description

Saved in:
Bibliographic Details
Published in:Animal microbiome 2020-05, Vol.2 (1), p.20-20, Article 20
Main Authors: Bhute, Shrikant S, Escobedo, Brisa, Haider, Mina, Mekonen, Yididya, Ferrer, Dafhney, Hillyard, Stanley D, Friel, Ariel D, van Breukelen, Frank, Hedlund, Brian P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pupfishes frequently enter paradoxical anaerobism in response to endogenously produced or exogenously supplied ethanol in a dose-dependent manner. To decipher the role of the gut microbiota in ethanol-associated paradoxical anaerobism, gut microbial communities were depleted using a cocktail of antibiotics and profiled using 16S rRNA gene sequencing. Compared to the control group (n = 12), microbiota-depleted fish (n = 12) spent more time in paradoxical anaerobism. Our analysis indicated that the bacterial phyla Proteobacteria, Fusobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Patescibacteria, and Dependentiae dominated the pupfish gut, which is consistent with other fish gut microbiota. Although the gut microbial communities with and without antibiotic treatment were similarly diverse, they were distinct and the greatest contribution to the dissimilarity (27.38%) was the common fish commensal Cetobacterium. This study reports the first characterization of gut microbial communities of pupfish and suggests the microbiome may play a critical role in regulating metabolic strategies that are critical for survival in extremes of temperature and oxygen concentration. We speculate that Cetobacterium, a primary fermenter, also consumes ethanol through secondary fermentation via an alcohol dehydrogenase and therefore regulates the transition from paradoxical anaerobism to aerobic respiration in fish. Given the wide distribution and abundance of Cetobacterium in warm-water fishes, this process may be of broad importance, and suggests that the microbiome be carefully considered for both conservation and aquaculture.
ISSN:2524-4671
2524-4671
DOI:10.1186/s42523-020-00037-5